Search results
Results from the WOW.Com Content Network
Hemoglobin in normal red blood cells is protected by a reduction system to keep this from happening. Nitric oxide is capable of converting a small fraction of hemoglobin to methemoglobin in red blood cells. The latter reaction is a remnant activity of the more ancient nitric oxide dioxygenase function of globins.
Red blood cells (RBCs), referred to as erythrocytes (from Ancient Greek erythros 'red' and kytos 'hollow vessel', with -cyte translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, [1] erythroid cells, and rarely haematids, are the most common type of blood cell and the vertebrate's principal means of delivering oxygen (O 2) to the body tissues—via ...
A red blood cell in a hypotonic solution, causing water to move into the cell A red blood cell in a hypertonic solution, causing water to move out of the cell. Hemolysis or haemolysis (/ h iː ˈ m ɒ l ɪ s ɪ s /), [1] also known by several other names, is the rupturing of red blood cells (erythrocytes) and the release of their contents into surrounding fluid (e.g. blood plasma).
Hemolysins or haemolysins are lipids and proteins that cause lysis of red blood cells by disrupting the cell membrane.Although the lytic activity of some microbe-derived hemolysins on red blood cells may be of great importance for nutrient acquisition, many hemolysins produced by pathogens do not cause significant destruction of red blood cells during infection.
In hematology, erythrocyte deformability refers to the ability of erythrocytes (red blood cells, RBCs) to change shape under a given level of applied stress without hemolysing (rupturing). This is an important property because erythrocytes must change their shape extensively under the influence of mechanical forces in fluid flow or while ...
Hemoglobin is an iron-containing protein that gives red blood cells their color and facilitates transportation of oxygen from the lungs to tissues and carbon dioxide from tissues to the lungs to be exhaled. [3] Red blood cells are the most abundant cell in the blood, accounting for about 40-45% of its volume.
The Kell antigen system (also known as the Kell–Cellano system) is a human blood group system, that is, a group of antigens on the human red blood cell surface which are important determinants of blood type and are targets for autoimmune or alloimmune diseases which destroy red blood cells.
A feedback loop involving erythropoietin helps regulate the process of erythropoiesis so that, in non-disease states, the production of red blood cells is equal to the destruction of red blood cells and the red blood cell number is sufficient to sustain adequate tissue oxygen levels but not so high as to cause sludging, thrombosis, or stroke ...