Search results
Results from the WOW.Com Content Network
In probability theory, an exponentially modified Gaussian distribution (EMG, also known as exGaussian distribution) describes the sum of independent normal and exponential random variables. An exGaussian random variable Z may be expressed as Z = X + Y , where X and Y are independent, X is Gaussian with mean μ and variance σ 2 , and Y is ...
In statistics, the Box–Cox distribution (also known as the power-normal distribution) is the distribution of a random variable X for which the Box–Cox transformation on X follows a truncated normal distribution. It is a continuous probability distribution having probability density function (pdf) given by
The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...
The standard Box–Muller transform generates values from the standard normal distribution (i.e. standard normal deviates) with mean 0 and standard deviation 1. The implementation below in standard C++ generates values from any normal distribution with mean μ {\displaystyle \mu } and variance σ 2 {\displaystyle \sigma ^{2}} .
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
For an exponential distribution, the tail looks just like the body of the distribution. One way is to fall back to the most elementary algorithm E = −ln(U 1) and let x = x 1 − ln(U 1). Another is to call the ziggurat algorithm recursively and add x 1 to the result. For a normal distribution, Marsaglia suggests a compact algorithm:
The terms "distribution" and "family" are often used loosely: Specifically, an exponential family is a set of distributions, where the specific distribution varies with the parameter; [a] however, a parametric family of distributions is often referred to as "a distribution" (like "the normal distribution", meaning "the family of normal distributions"), and the set of all exponential families ...
The critical case for this principle is the Gaussian function, of substantial importance in probability theory and statistics as well as in the study of physical phenomena exhibiting normal distribution (e.g., diffusion). The Fourier transform of a Gaussian function is another Gaussian function.