Search results
Results from the WOW.Com Content Network
In probability theory, an exponentially modified Gaussian distribution (EMG, also known as exGaussian distribution) describes the sum of independent normal and exponential random variables. An exGaussian random variable Z may be expressed as Z = X + Y , where X and Y are independent, X is Gaussian with mean μ and variance σ 2 , and Y is ...
Johnson's -distribution has been used successfully to model asset returns for portfolio management. [3] This comes as a superior alternative to using the Normal distribution to model asset returns. An R package, JSUparameters , was developed in 2021 to aid in the estimation of the parameters of the best-fitting Johnson's S U {\displaystyle S_{U ...
From a uniform distribution, we can transform to any distribution with an invertible cumulative distribution function. If G is an invertible cumulative distribution function, and U is a uniformly distributed random variable, then the random variable G −1 ( U ) has G as its cumulative distribution function.
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, or the Smirnov transform) is a basic method for pseudo-random number sampling, i.e., for generating sample numbers at random from any probability distribution given its cumulative distribution function.
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
[2] [3] Equivalently, if Y has a normal distribution, then the exponential function of Y, X = exp(Y), has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values.
The standard Box–Muller transform generates values from the standard normal distribution (i.e. standard normal deviates) with mean 0 and standard deviation 1. The implementation below in standard C++ generates values from any normal distribution with mean μ {\displaystyle \mu } and variance σ 2 {\displaystyle \sigma ^{2}} .