Search results
Results from the WOW.Com Content Network
For example, in livestock breeding, breeders may use inbreeding when trying to establish a new and desirable trait in the stock and for producing distinct families within a breed, but will need to watch for undesirable characteristics in offspring, which can then be eliminated through further selective breeding or culling. Inbreeding also helps ...
The hypothesis states that inbreeding increases the amount of overall homozygosity—not just locally in the MHC, so an increase in genetic homozygosity may be accompanied not only by the expression of recessive diseases and mutations, but by the loss of any potential heterozygote advantage as well. [17] [2] Animals only rarely avoid inbreeding ...
The words homozygous, heterozygous, and hemizygous are used to describe the genotype of a diploid organism at a single locus on the DNA. Homozygous describes a genotype consisting of two identical alleles at a given locus, heterozygous describes a genotype consisting of two different alleles at a locus, hemizygous describes a genotype consisting of only a single copy of a particular gene in an ...
For example, the step-wise reintroduction strategy of the Alpine Ibex in the Swiss Alps created several strong population bottlenecks that reduced the genetic diversity of the newly introduced individuals. The effect of inbreeding in the resulting sub-populations could be studied by measuring the runs of homozygosity in different individuals.
Genetic purging is the increased pressure of natural selection against deleterious alleles prompted by inbreeding. [1]Purging occurs because deleterious alleles tend to be recessive, which means that they only express all their harmful effects when they are present in the two copies of the individual (i.e., in homozygosis).
In earlier sections, the Inbreeding coefficient has been defined as, "the probability that two same alleles ( A and A, or a and a) have a common origin"—or, more formally, "The probability that two homologous alleles are autozygous." Previously, the emphasis was on an individual's likelihood of having two such alleles, and the coefficient was ...
F IT is the inbreeding coefficient of an individual (I) relative to the total (T) population, as above; F IS is the inbreeding coefficient of an individual (I) relative to the subpopulation (S), using the above for subpopulations and averaging them; and F ST is the effect of subpopulations (S) compared to the total population (T), and is ...
The existence of the LSI mechanism among different taxa and in general, is subject for scientific debate. Criticizers claim, that absence of fruit set is due to genetic defects (homozygosity for lethal recessive alleles), which are the direct result of self-fertilization (inbreeding depression).