Search results
Results from the WOW.Com Content Network
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
This can be reduced to a generalized eigenvalue problem by algebraic manipulation at the cost of solving a larger system. The orthogonality properties of the eigenvectors allows decoupling of the differential equations so that the system can be represented as linear summation of the eigenvectors.
In numerical linear algebra, the Jacobi eigenvalue algorithm is an iterative method for the calculation of the eigenvalues and eigenvectors of a real symmetric matrix ...
Rayleigh quotient iteration is an eigenvalue algorithm which extends the idea of the inverse iteration by using the Rayleigh quotient to obtain increasingly accurate eigenvalue estimates. Rayleigh quotient iteration is an iterative method, that is, it delivers a sequence of approximate solutions that converges to a true solution in the limit ...
In such applications, typically the statistics of matrices is known in advance and one can take as an approximate eigenvalue the average eigenvalue for some large matrix sample. Better, one may calculate the mean ratio of the eigenvalues to the trace or the norm of the matrix and estimate the average eigenvalue as the trace or norm multiplied ...
Once the eigenvalues are computed, the eigenvectors could be calculated by solving the equation (), = using Gaussian elimination or any other method for solving matrix equations. However, in practical large-scale eigenvalue methods, the eigenvectors are usually computed in other ways, as a byproduct of the eigenvalue computation.
The Rayleigh–Ritz method is a direct numerical method of approximating eigenvalues, originated in the context of solving physical boundary value problems and named after Lord Rayleigh and Walther Ritz.
In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.