Search results
Results from the WOW.Com Content Network
For example, an IBM PC with an Intel 80486 CPU running at 50 MHz will be about twice as fast (internally only) as one with the same CPU and memory running at 25 MHz, while the same will not be true for MIPS R4000 running at the same clock rate as the two are different processors that implement different architectures and microarchitectures ...
The same is true for newer processors: When a single-core Intel CPU was 20% underclocked, the PC's performance was down only 13% with a 49% power reduction. [3] In general, the power consumed by a CPU with a capacitance C, running at frequency f and voltage V is approximately [4] =.
For a given rate of work, a CPU running at a higher clock rate will execute a greater proportion of HLT instructions. The simple equation which relates power, voltage and frequency above also does not take into account the static power consumption of the CPU. This tends not to change with frequency, but does change with temperature and voltage.
This is done by running a CPU-intensive program for extended periods of time, to test whether the computer hangs or crashes. CPU stress testing is also referred to as torture testing. Software that is suitable for torture testing should typically run instructions that utilise the entire chip rather than only a few of its units. Stress testing a ...
This involves comparing the timer tick of the operating system (the tick that usually is 100–1000 times per second) and the speed of the CPU. If the OS timer and the CPU run on two independent clock crystals the situation is ideal and more or less the same as the previous example.
ACPI 1.0 (1996) defines a way for a CPU to go to idle "C states", but defines no frequency-scaling system. ACPI 2.0 (2000) introduces a system of P states (power-performance states) that a processor can use to communicate its possible frequency–power settings to the OS. The operating system then sets the speed as needed by switching between ...
The feature was relatively common on systems running 286 to 486 CPUs, [7] and less common on Pentium era computers. The frequency displays largely disappeared or were reprogrammed to display "HI"/"LO", "99", or were replaced with a three-digit display when CPU speeds reached 100 MHz, since most systems only had a two-digit display.
The useful work that can be done with any computer depends on many factors besides the processor speed. These factors include the instruction set architecture, the processor's microarchitecture, and the computer system organization (such as the design of the disk storage system and the capabilities and performance of other attached devices), the efficiency of the operating system, and the high ...