enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spinor - Wikipedia

    en.wikipedia.org/wiki/Spinor

    The main example is the case that the real vector space V is a hermitian vector space (V, h), i.e., V is equipped with a complex structure J that is an orthogonal transformation with respect to the inner product g on V. Then splits in the ±i eigenspaces of J.

  3. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    The conventional definition of the spin quantum number is s = ⁠ n / 2 ⁠, where n can be any non-negative integer. Hence the allowed values of s are 0, ⁠ 1 / 2 ⁠, 1, ⁠ 3 / 2 ⁠, 2, etc. The value of s for an elementary particle depends only on the type of particle and cannot be altered in any known way (in contrast to the spin ...

  4. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    Often, the first example of spinors that a student of physics encounters are the 2×1 spinors used in Pauli's theory of electron spin. The Pauli matrices are a vector of three 2×2 matrices that are used as spin operators. Given a unit vector in 3 dimensions, for example (a, b, c), one takes a dot product with the Pauli spin matrices to obtain ...

  5. Quark - Wikipedia

    en.wikipedia.org/wiki/Quark

    Spin can be represented by a vector whose length is measured in units of the reduced Planck constant ħ (pronounced "h bar"). For quarks, a measurement of the spin vector component along any axis can only yield the values + ⁠ ħ / 2 ⁠ or − ⁠ ħ / 2 ⁠; for this reason quarks are classified as spin-⁠ 1 / 2 ⁠ particles. [70]

  6. Triplet state - Wikipedia

    en.wikipedia.org/wiki/Triplet_state

    Examples of atoms in singlet, doublet, and triplet states. In quantum mechanics, a triplet state, or spin triplet, is the quantum state of an object such as an electron, atom, or molecule, having a quantum spin S = 1. It has three allowed values of the spin's projection along a given axis m S = −1, 0, or +1, giving the name "triplet".

  7. Angular momentum coupling - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_coupling

    In atomic physics, spin–orbit coupling, also known as spin-pairing, describes a weak magnetic interaction, or coupling, of the particle spin and the orbital motion of this particle, e.g. the electron spin and its motion around an atomic nucleus. One of its effects is to separate the energy of internal states of the atom, e.g. spin-aligned and ...

  8. Spin–orbit interaction - Wikipedia

    en.wikipedia.org/wiki/Spin–orbit_interaction

    The spin magnetic moment of the electron is =, where is the spin (or intrinsic angular-momentum) vector, is the Bohr magneton, and = is the electron-spin g-factor. Here μ {\displaystyle {\boldsymbol {\mu }}} is a negative constant multiplied by the spin , so the spin magnetic moment is antiparallel to the spin.

  9. Spin structure - Wikipedia

    en.wikipedia.org/wiki/Spin_structure

    In particle physics the spin–statistics theorem implies that the wavefunction of an uncharged fermion is a section of the associated vector bundle to the spin lift of an SO(N) bundle E. Therefore, the choice of spin structure is part of the data needed to define the wavefunction, and one often needs to sum over these choices in the partition ...