enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    The Lagrangian and Eulerian specifications of the flow field are sometimes loosely denoted as the Lagrangian and Eulerian frame of reference. However, in general both the Lagrangian and Eulerian specification of the flow field can be applied in any observer's frame of reference , and in any coordinate system used within the chosen frame of ...

  3. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path.

  4. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once. If such a cycle exists, the graph is called Eulerian or unicursal. [4] The term "Eulerian graph" is also sometimes used in a weaker sense to denote a graph where every vertex has even degree.

  5. Action principles - Wikipedia

    en.wikipedia.org/wiki/Action_principles

    A system moving between two points takes one particular path; other similar paths are not taken. Each path corresponds to a value of the action. An action principle predicts or explains that the particular path taken has a stationary value for the system's action: similar paths near the one taken have very similar action value.

  6. Hamilton's principle - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_principle

    Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.

  7. Action (physics) - Wikipedia

    en.wikipedia.org/wiki/Action_(physics)

    The action is typically represented as an integral over time, taken along the path of the system between the initial time and the final time of the development of the system: [11] =, where the integrand L is called the Lagrangian. For the action integral to be well-defined, the trajectory has to be bounded in time and space.

  8. AOL Mail

    mail.aol.com/?rp=webmail-std/en-us/basic

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    The correspondence between Lagrangian and Hamiltonian mechanics is achieved with the tautological one-form. Any smooth real-valued function H on a symplectic manifold can be used to define a Hamiltonian system. The function H is known as "the Hamiltonian" or "the energy function." The symplectic manifold is then called the phase space.