Search results
Results from the WOW.Com Content Network
In computer science, a red–black tree is a self-balancing binary search tree data structure noted for fast storage and retrieval of ordered information. The nodes in a red-black tree hold an extra "color" bit, often drawn as red and black, which help ensure that the tree is always approximately balanced.
The library is available on GitHub. It uses the underlying balanced binary tree structure using join-based algorithms. [1] PAM supports four balancing schemes, including AVL trees, red-black trees, treaps and weight-balanced trees. PAM is a parallel library and is also safe for concurrency.
A left-leaning red-black tree satisfies all the properties of a red-black tree: Every node is either red or black. A NIL node is considered black. A red node does not have a red child. Every path from a given node to any of its descendant NIL nodes goes through the same number of black nodes. The root is black (by convention).
AA tree; AVL tree; Binary search tree; Binary tree; Cartesian tree; Conc-tree list; Left-child right-sibling binary tree; Order statistic tree; Pagoda; Randomized binary search tree; Red–black tree; Rope; Scapegoat tree; Self-balancing binary search tree; Splay tree; T-tree; Tango tree; Threaded binary tree; Top tree; Treap; WAVL tree; Weight ...
Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:
Various height-balanced binary search trees were introduced to confine the tree height, such as AVL trees, Treaps, and red–black trees. [5] The AVL tree was invented by Georgy Adelson-Velsky and Evgenii Landis in 1962 for the efficient organization of information. [6] [7] It was the first self-balancing binary search tree to be invented. [8]
AA trees are named after their originator, Swedish computer scientist Arne Andersson. [1] AA trees are a variation of the red–black tree, a form of binary search tree which supports efficient addition and deletion of entries. Unlike red–black trees, red nodes on an AA tree can only be added as a right subchild.
AVL tree, red–black tree, and splay tree, kinds of binary search tree data structures that use rotations to maintain balance. Associativity of a binary operation means that performing a tree rotation on it does not change the final result. The Day–Stout–Warren algorithm balances an unbalanced BST.