Search results
Results from the WOW.Com Content Network
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
This is the group obtained from the orthogonal group in dimension 2n + 1 by taking the kernel of the determinant and spinor norm maps. B 1 (q) also exists, but is the same as A 1 (q). B 2 (q) has a non-trivial graph automorphism when q is a power of 2. This group is obtained from the symplectic group in 2n dimensions by quotienting out the center.
Yet another example of grouping the data is the use of some commonly used numerical values, which are in fact "names" we assign to the categories. For example, let us look at the age distribution of the students in a class. The students may be 10 years old, 11 years old or 12 years old. These are the age groups, 10, 11, and 12.
A series with the additional property that A i ≠ A i +1 for all i is called a series without repetition; equivalently, each A i is a proper subgroup of A i +1. The length of a series is the number of strict inclusions A i < A i +1. If the series has no repetition then the length is n.
This is a table of Clebsch–Gordan coefficients used for adding angular momentum values in quantum mechanics. The overall sign of the coefficients for each set of constant j 1 {\displaystyle j_{1}} , j 2 {\displaystyle j_{2}} , j {\displaystyle j} is arbitrary to some degree and has been fixed according to the Condon–Shortley and Wigner sign ...
Because the group is finite, the pigeonhole principle guarantees that each element of the group will be represented in each row and in each column exactly once. Thus, the Cayley table of a group is an example of a latin square. An alternative and more succinct proof follows from the cancellation property. This property implies that for each x ...
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.