enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Water (data page) - Wikipedia

    en.wikipedia.org/wiki/Water_(data_page)

    Data in the table above is given for water–steam equilibria at various temperatures over the entire temperature range at which liquid water can exist. Pressure of the equilibrium is given in the second column in kPa. The third column is the heat content of each gram of the liquid phase relative to water at 0 °C.

  3. Properties of water - Wikipedia

    en.wikipedia.org/wiki/Properties_of_water

    The specific enthalpy of fusion (more commonly known as latent heat) of water is 333.55 kJ/kg at 0 °C: the same amount of energy is required to melt ice as to warm ice from −160 °C up to its melting point or to heat the same amount of water by about 80 °C. Of common substances, only that of ammonia is higher.

  4. Enthalpy of fusion - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_of_fusion

    Enthalpies of melting and boiling for pure elements versus temperatures of transition, demonstrating Trouton's rule. In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.

  5. Heats of fusion of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Heats_of_fusion_of_the...

    J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds

  6. Heats of vaporization of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Heats_of_vaporization_of...

    J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds

  7. Latent heat - Wikipedia

    en.wikipedia.org/wiki/Latent_heat

    Black next showed that a water temperature of 176 °F was needed to melt an equal mass of ice until it was all 32 °F. So now 176 – 32 = 144 “degrees of heat” seemed to be needed to melt the ice. The modern value for the heat of fusion of ice would be 143 “degrees of heat” on the same scale (79.5 “degrees of heat Celsius”). [18] [15]

  8. Thermodynamic databases for pure substances - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_databases...

    Molar enthalpy of zinc above 298.15 K and at 1 atm pressure, showing discontinuities at the melting and boiling points. The Δ H °m of zinc is 7323 J/mol, and the Δ H °v is 115 330 J/mol. Enthalpy change for a chemical reaction

  9. Thermochemical equation - Wikipedia

    en.wikipedia.org/wiki/Thermochemical_equation

    Enthalpy is the transfer of energy in a reaction (for chemical reactions, it is in the form of heat) and is the change in enthalpy. Δ H {\displaystyle \Delta H} is a state function, meaning that Δ H {\displaystyle \Delta H} is independent of processes occurring between initial and final states.