enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. [3][4][5] For example, The theorem says two things about this example: first ...

  3. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    This property is the key in the proof of the fundamental theorem of arithmetic. [note 2] It is used to define prime elements, a generalization of prime numbers to arbitrary commutative rings. Euclid's lemma shows that in the integers irreducible elements are also prime elements. The proof uses induction so it does not apply to all integral domains.

  4. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    Another proof by complete induction uses the hypothesis that the statement holds for all smaller more thoroughly. Consider the statement that "every natural number greater than 1 is a product of (one or more) prime numbers", which is the "existence" part of the fundamental theorem of arithmetic.

  5. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Paul ErdÅ‘s gave a proof [11] that also relies on the fundamental theorem of arithmetic. Every positive integer has a unique factorization into a square-free number r and a square number s 2. For example, 75,600 = 2 4 3 3 5 2 7 1 = 21 ⋅ 60 2.

  6. Minimal counterexample - Wikipedia

    en.wikipedia.org/wiki/Minimal_counterexample

    Euclid's proof of the fundamental theorem of arithmetic is a simple proof which uses a minimal counterexample. [5] [6] Courant and Robbins used the term minimal criminal for a minimal counter-example in the context of the four color theorem. [7]

  7. Fundamental theorem of algebra - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of_algebra

    Fundamental theorem of algebra. The fundamental theorem of algebra, also called d'Alembert's theorem[1] or the d'Alembert–Gauss theorem, [2] states that every non- constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex ...

  8. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    Then P(n) is true for all natural numbers n. For example, we can prove by induction that all positive integers of the form 2n − 1 are odd. Let P(n) represent " 2n − 1 is odd": (i) For n = 1, 2n − 1 = 2 (1) − 1 = 1, and 1 is odd, since it leaves a remainder of 1 when divided by 2. Thus P(1) is true.

  9. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas relate the polynomial coefficients to signed sums of products of the roots r1, r2, ..., rn as follows: Vieta's formulas can equivalently be written as for k = 1, 2, ..., n (the indices ik are sorted in increasing order to ensure each product of k roots is used exactly once). The left-hand sides of Vieta's formulas are the ...