enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    Rank (linear algebra) In linear algebra, the rank of a matrix A is the dimension of the vector space generated (or spanned) by its columns. [1][2][3] This corresponds to the maximal number of linearly independent columns of A. This, in turn, is identical to the dimension of the vector space spanned by its rows. [4]

  3. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Matrix (mathematics) An m × n matrix: the m rows are horizontal and the n columns are vertical. Each element of a matrix is often denoted by a variable with two subscripts. For example, a2,1 represents the element at the second row and first column of the matrix. In mathematics, a matrix (pl.: matrices) is a rectangular array or table of ...

  4. Rank factorization - Wikipedia

    en.wikipedia.org/wiki/Rank_factorization

    Every finite-dimensional matrix has a rank decomposition: Let be an matrix whose column rank is . Therefore, there are r {\textstyle r} linearly independent columns in A {\textstyle A} ; equivalently, the dimension of the column space of A {\textstyle A} is r {\textstyle r} .

  5. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The total number of indices is also called the order, degree or rank of a tensor, [2] [3] [4] although the term "rank" generally has another meaning in the context of matrices and tensors. Just as the components of a vector change when we change the basis of the vector space, the components of a tensor also change under such a transformation.

  6. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The dimension of the column space is called the rank of the matrix and is at most min (m, n). [1] A definition for matrices over a ring is also possible. The row space is defined similarly. The row space and the column space of a matrix A are sometimes denoted as C(AT) and C(A) respectively. [2]

  7. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A matrix whose elements are of the form 1/ (xi + yj) for (xi), (yj) injective sequences (i.e., taking every value only once). Centrosymmetric matrix. A matrix symmetric about its center; i.e., aij = an−i+1,n−j+1. Circulant matrix. A matrix where each row is a circular shift of its predecessor. Conference matrix.

  8. Generator matrix - Wikipedia

    en.wikipedia.org/wiki/Generator_matrix

    A generator matrix for a linear [,,]-code has format , where n is the length of a codeword, k is the number of information bits (the dimension of C as a vector subspace), d is the minimum distance of the code, and q is size of the finite field, that is, the number of symbols in the alphabet (thus, q = 2 indicates a binary code, etc.).

  9. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    Suppose s, t, w, z ∈ C so that (s, t) and (w, z) are in C 2. Then the outer product of these complex 2-vectors is an element of M(2, C), the 2 × 2 complex matrices: (). The determinant of this matrix is swtz − sztw = 0 because of the commutative property of C.