Search results
Results from the WOW.Com Content Network
The most general power rule is the functional power rule: for any functions f and g, {\displaystyle (f^ {g})'=\left (e^ {g\ln f}\right)'=f^ {g}\left (f' {g \over f}+g'\ln f\right),\quad } wherever both sides are well defined. Special cases. If , then when a is any non-zero real number and x is positive.
Calculus. In calculus, the power rule is used to differentiate functions of the form , whenever is a real number. Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule. The power rule underlies the Taylor series as it relates a power series with a function's ...
To the right is the long tail, and to the left are the few that dominate (also known as the 80–20 rule). In statistics, a power law is a functional relationship between two quantities, where a relative change in one quantity results in a relative change in the other quantity proportional to the change raised to a constant exponent: one ...
Generalized mean. Plot of several generalized means . In mathematics, generalized means (or power mean or Hölder mean from Otto Hölder) [1] are a family of functions for aggregating sets of numbers. These include as special cases the Pythagorean means (arithmetic, geometric, and harmonic means).
Calculus. In calculus, the product rule (or Leibniz rule[1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as or in Leibniz's notation as.
The Lie derivative is the rate of change of a vector or tensor field along the flow of another vector field. On vector fields, it is an example of a Lie bracket (vector fields form the Lie algebra of the diffeomorphism group of the manifold). It is a grade 0 derivation on the algebra.
This visualization also explains why integration by parts may help find the integral of an inverse function f−1 (x) when the integral of the function f (x) is known. Indeed, the functions x (y) and y (x) are inverses, and the integral ∫ x dy may be calculated as above from knowing the integral ∫ y dx.
In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix , the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, . The algorithm is also known as the Von Mises ...