Search results
Results from the WOW.Com Content Network
Hyperbola. A hyperbola is an open curve with two branches, the intersection of a plane with both halves of a double cone. The plane does not have to be parallel to the axis of the cone; the hyperbola will be symmetrical in any case. Hyperbola (red): features. In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its ...
The major axis is the chord between the two vertices: the longest chord of an ellipse, the shortest chord between the branches of a hyperbola. Its half-length is the semi-major axis ( a ). When an ellipse or hyperbola are in standard position as in the equations below, with foci on the x -axis and center at the origin, the vertices of the conic ...
Kiepert hyperbola of ABC. The hyperbola passes through the vertices A, B, C, the orthocenter (O) and the centroid (G) of the triangle. 2: Jerabek hyperbola: The conic which passes through the vertices, the orthocenter and the circumcenter of the triangle of reference is known as the Jerabek hyperbola. It is always a rectangular hyperbola.
Matrix representation of conic sections. In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by ...
Circumconic and inconic. In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, [ 1] and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle. [ 2] Suppose A, B, C are distinct non-collinear points, and let ABC denote the triangle whose vertices are A, B, C.
F: focus of the red parabola and vertex of the blue parabola. In geometry, focal conics are a pair of curves consisting of [1] [2] either. an ellipse and a hyperbola, where the hyperbola is contained in a plane, which is orthogonal to the plane containing the ellipse. The vertices of the hyperbola are the foci of the ellipse and its foci are ...
The center of all rectangular hyperbolas that pass through the vertices of a triangle lies on its nine-point circle. Examples include the well-known rectangular hyperbolas of Keipert, JeÅ™ábek and Feuerbach. This fact is known as the Feuerbach conic theorem. The nine point circle and the 16 tangent circles of the orthocentric system
Feuerbach hyperbola. In geometry, the Feuerbach hyperbola is a rectangular hyperbola passing through important triangle centers such as the Orthocenter, Gergonne point, Nagel point and Schiffler point. The center of the hyperbola is the Feuerbach point, the point of tangency of the incircle and the nine-point circle. [1]