Search results
Results from the WOW.Com Content Network
A simple harmonic oscillator is an oscillator that is neither driven nor damped. It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k. Balance of forces (Newton's second law) for the system is.
In physics, specifically in quantum mechanics, a coherent state is the specific quantum state of the quantum harmonic oscillator, often described as a state that has dynamics most closely resembling the oscillatory behavior of a classical harmonic oscillator. It was the first example of quantum dynamics when Erwin Schrödinger derived it in ...
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point , it is one of the most important model systems in quantum mechanics.
Linearity. The Schrödinger equation is a linear differential equation, meaning that if two state vectors and are solutions, then so is any linear combination of the two state vectors where a and b are any complex numbers. [13]: 25 Moreover, the sum can be extended for any number of state vectors.
Creation and annihilation operators. Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. [1] An annihilation operator (usually denoted ) lowers the number of particles in a given state by one.
A harmonic oscillator in classical mechanics (A–B) and quantum mechanics (C–H). In (A–B), a ball, attached to a spring, oscillates back and forth. (C–H) are six solutions to the Schrödinger equation for this situation. The horizontal axis is position, the vertical axis is the real part (blue) or imaginary part (red) of the wavefunction.
The Hermite polynomials (probabilist's or physicist's) form an orthogonal basis of the Hilbert space of functions satisfying in which the inner product is given by the integral including the Gaussian weight function w(x) defined in the preceding section. An orthogonal basis for L2 (R, w (x) dx) is a complete orthogonal system.
For the harmonic oscillator, x and p enter symmetrically, so there it does not matter which description one uses. The same equation (modulo constants) results. From this, with a little bit of afterthought, it follows that solutions to the wave equation of the harmonic oscillator are eigenfunctions of the Fourier transform in L 2. [nb 5]