Search results
Results from the WOW.Com Content Network
In the typical case of a WiFi network, increasing transmission power on the access point only will not solve the problem because typically the hidden nodes are the clients (e.g. laptops, mobile devices), not the access point itself, and the clients will still not be able to hear each other. Increasing transmission power on the access point is ...
In wireless networks, the exposed node problem occurs when a node is prevented from sending packets to other nodes because of co-channel interference with a neighboring transmitter. Consider an example of four nodes labeled R1, S1, S2, and R2, where the two receivers (R1, R2) are out of range of each other, yet the two transmitters (S1, S2) in ...
This led to the adoption of interference alignment in the design of wireless networks. [3] Jafar explained: My research group crystallized the concept of interference alignment and showed that through interference alignment, it is possible for everyone to access half of the total bandwidth free from interference.
If the channel is found busy during the DIFS interval, the station defers its transmission. In a network where a number of stations contend for the wireless medium, if multiple stations sense the channel busy and defer their access, they will also virtually simultaneously find that the channel is released and then try to seize the channel.
Dynamic Frequency Selection (DFS) is a channel allocation scheme specified for wireless LANs, commonly known as Wi-Fi. It is designed to prevent electromagnetic interference by avoiding co-channel operation with systems that predated Wi-Fi, such as military radar , satellite communication , and weather radar , and also to provide on aggregate a ...
It is particularly important for wireless networks, where the alternative with collision detection CSMA/CD, is not possible due to wireless transmitters desensing (turning off) their receivers during packet transmission. CSMA/CA is unreliable due to the hidden node problem. [3] [4] CSMA/CA is a protocol that operates in the data link layer.
Electromagnetic interference divides into several categories according to the source and signal characteristics. The origin of interference, often called "noise" in this context, can be human-made (artificial) or natural. Continuous, or continuous wave (CW), interference arises where the source continuously emits at a given range of frequencies.
Bluetooth devices intended for use in short-range personal area networks operate from 2.4 to 2.4835 GHz. To reduce interference with other protocols that use the 2.45 GHz band, the Bluetooth protocol divides the band into 80 channels (numbered from 0 to 79, each 1 MHz wide) and changes channels up to 1600 times per second.