enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bicycle and motorcycle dynamics - Wikipedia

    en.wikipedia.org/.../Bicycle_and_motorcycle_dynamics

    It is possible to calculate eigenvalues, one for each of the four state variables (lean angle, lean rate, steer angle, and steer rate), from the linearized equations in order to analyze the normal modes and self-stability of a particular bike design. In the plot to the right, eigenvalues of one particular bicycle are calculated for forward ...

  3. Vehicle dynamics - Wikipedia

    en.wikipedia.org/wiki/Vehicle_dynamics

    Vehicle dynamics is the study of vehicle motion, e.g., how a vehicle's forward movement changes in response to driver inputs, propulsion system outputs, ambient conditions, air/surface/water conditions, etc. Vehicle dynamics is a part of engineering primarily based on classical mechanics.

  4. Slip (vehicle dynamics) - Wikipedia

    en.wikipedia.org/wiki/Slip_(vehicle_dynamics)

    In (automotive) vehicle dynamics, slip is the relative motion between a tire and the road surface it is moving on. This slip can be generated either by the tire's rotational speed being greater or less than the free-rolling speed (usually described as percent slip), or by the tire's plane of rotation being at an angle to its direction of motion (referred to as slip angle).

  5. Traction (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Traction_(mechanics)

    One notable exception is in the motorsport technique of drifting, in which rear-wheel traction is purposely lost during high speed cornering. Other designs dramatically increase surface area to provide more traction than wheels can, for example in continuous track and half-track vehicles.

  6. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  7. Spacecraft attitude determination and control - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_attitude...

    A spacecraft's attitude must typically be stabilized and controlled for a variety of reasons. It is often needed so that the spacecraft high-gain antenna may be accurately pointed to Earth for communications, so that onboard experiments may accomplish precise pointing for accurate collection and subsequent interpretation of data, so that the heating and cooling effects of sunlight and shadow ...

  8. Physics of roller coasters - Wikipedia

    en.wikipedia.org/wiki/Physics_of_roller_coasters

    The physics of roller coasters comprises the mechanics that affect the design and operation of roller coasters, a machine that uses gravity and inertia to send a train of cars along a winding track. Gravity, inertia, g-forces , and centripetal acceleration give riders constantly changing forces which create certain sensations as the coaster ...

  9. Critical speed - Wikipedia

    en.wikipedia.org/wiki/Critical_speed

    Both calculate an approximation of the first natural frequency of vibration, which is assumed to be nearly equal to the critical speed of rotation. The Rayleigh–Ritz method is discussed here. For a shaft that is divided into n segments, the first natural frequency for a given beam, in rad/s , can be approximated as: