Search results
Results from the WOW.Com Content Network
Time response is measured by immersing the sensor in water moving at 1 m/s (3.3 ft/s) with a 63.2% step change. Size A standard RTD sheath is 3.175 to 6.35 mm (0.1250 to 0.2500 in) in diameter; sheath diameters for thermocouples can be less than 1.6 mm (0.063 in). Accuracy and stability requirements
Figure 2: [8] Working principle of a thermal laser sensor (Adapted from figure 3 with permission) As shown in Fig 2, a thermopile laser sensor consists of several thermocouples connected in series with one junction type (hot junction at temperature T 1) being exposed to an absorption area and the other junction type (cold junction at temperature T 2) being exposed to a heat sink.
The two top thermocouple junctions are at temperature T 1 while the two bottom thermocouple junctions are at temperature T 2. The output voltage from the thermopile, ΔV , is directly proportional to the temperature differential, ΔT or T 1 - T 2 , across the thermal resistance layer and number of thermocouple junction pairs.
The thermowell protects the instrument from the pressure, flow-induced forces, and chemical effects of the process fluid. Typically a thermowell is made from metal bar stock. The end of the thermowell may be of reduced diameter (as is the case with a tapered or stepped-shank thermowell) to improve the speed of response.
The heat generated dissipates into the sample on both sides of the sensor, at a rate depending on the thermal transport properties of the material. By recording temperature vs. time response in the sensor, the thermal conductivity, thermal diffusivity and specific heat capacity of the material can be calculated.
This output is used to infer the object's temperature from a distance, with no need for the pyrometer to be in thermal contact with the object; most other thermometers (e.g. thermocouples and resistance temperature detectors (RTDs)) are placed in thermal contact with the object and allowed to reach thermal equilibrium.
Temporal resolution (TR) refers to the discrete resolution of a measurement with respect to time. It is defined as the amount of time needed to revisit and acquire data for the exact same location. When applied to remote sensing, this amound of time is influenced by the sensor platform's orbital characteristics and the features of the sensor ...
A thermocouple (the right most tube) inside the burner assembly of a water heater Thermocouple connection in gas appliances. The end ball (contact) on the left is insulated from the fitting by an insulating washer. The thermocouple line consists of copper wire, insulator and outer metal (usually copper) sheath which is also used as ground. [33]