enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Divine Proportions: Rational Trigonometry to Universal Geometry

    en.wikipedia.org/wiki/Divine_Proportions:...

    Divine Proportions does not assume much in the way of mathematical background in its readers, but its many long formulas, frequent consideration of finite fields, and (after part I) emphasis on mathematical rigour are likely to be obstacles to a popular mathematics audience. Instead, it is mainly written for mathematics teachers and researchers.

  3. Talk:Divine Proportions: Rational Trigonometry to Universal ...

    en.wikipedia.org/wiki/Talk:Divine_Proportions:...

    Having attending several of Norman Wildeberger's talks, the rationale behind rational trigonometry is that the concept of an angle belongs to a circle (ie, Euler's formula), and that the concept of spread is far more natural for a triangle (c.f. Thales' theorem). Angles and distance also break down in fields other than the real numbers, whereas ...

  4. Wildberger - Wikipedia

    en.wikipedia.org/wiki/Wildberger

    Wildberger is a surname. Notable people with the surname include: Ed Wildberger, Missouri politician; Jacques Wildberger, Swiss composer; Norman J. Wildberger, mathematician known for rational trigonometry; Tina Wildberger, Hawaii politician

  5. Talk:Norman Wildberger - Wikipedia

    en.wikipedia.org/wiki/Talk:Norman_Wildberger

    I just created this article, because Wildberger clearly needed an article, as he has made an important contribution to mathematics with his new subject known as "rational trigonometry."Dratman 01:56, 17 September 2011 (UTC) I think there have been changes since the Wikipedia:Articles for deletion/Norman J. Wildberger discussion. Wildberger is ...

  6. Simplicial complex - Wikipedia

    en.wikipedia.org/wiki/Simplicial_complex

    A simplicial 3-complex. In mathematics, a simplicial complex is a structured set composed of points, line segments, triangles, and their n-dimensional counterparts, called simplices, such that all the faces and intersections of the elements are also included in the set (see illustration).

  7. Lindemann–Weierstrass theorem - Wikipedia

    en.wikipedia.org/wiki/Lindemann–Weierstrass...

    The theorem is also known variously as the Hermite–Lindemann theorem and the Hermite–Lindemann–Weierstrass theorem.Charles Hermite first proved the simpler theorem where the α i exponents are required to be rational integers and linear independence is only assured over the rational integers, [4] [5] a result sometimes referred to as Hermite's theorem. [6]

  8. Mordell–Weil theorem - Wikipedia

    en.wikipedia.org/wiki/Mordell–Weil_theorem

    The case with an elliptic curve and the field of rational numbers is Mordell's theorem, answering a question apparently posed by Henri Poincaré around 1901; it was proved by Louis Mordell in 1922. It is a foundational theorem of Diophantine geometry and the arithmetic of abelian varieties .

  9. Cross-multiplication - Wikipedia

    en.wikipedia.org/wiki/Cross-multiplication

    Pike's System of arithmetick abridged: designed to facilitate the study of the science of numbers, comprehending the most perspicuous and accurate rules, illustrated by useful examples: to which are added appropriate questions, for the examination of scholars, and a short system of book-keeping., 1827 - facsimile of the relevant section