Search results
Results from the WOW.Com Content Network
Divine Proportions does not assume much in the way of mathematical background in its readers, but its many long formulas, frequent consideration of finite fields, and (after part I) emphasis on mathematical rigour are likely to be obstacles to a popular mathematics audience. Instead, it is mainly written for mathematics teachers and researchers.
Having attending several of Norman Wildeberger's talks, the rationale behind rational trigonometry is that the concept of an angle belongs to a circle (ie, Euler's formula), and that the concept of spread is far more natural for a triangle (c.f. Thales' theorem). Angles and distance also break down in fields other than the real numbers, whereas ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Wildberger is a surname. Notable people with the surname include: Ed Wildberger, Missouri politician; Jacques Wildberger, Swiss composer; Norman J. Wildberger, mathematician known for rational trigonometry; Tina Wildberger, Hawaii politician
I just created this article, because Wildberger clearly needed an article, as he has made an important contribution to mathematics with his new subject known as "rational trigonometry."Dratman 01:56, 17 September 2011 (UTC) I think there have been changes since the Wikipedia:Articles for deletion/Norman J. Wildberger discussion. Wildberger is ...
A simplicial 3-complex. In mathematics, a simplicial complex is a structured set composed of points, line segments, triangles, and their n-dimensional counterparts, called simplices, such that all the faces and intersections of the elements are also included in the set (see illustration).
The HuffPost/Chronicle analysis found that subsidization rates tend to be highest at colleges where ticket sales and other revenue is the lowest — meaning that students who have the least interest in their college’s sports teams are often required to pay the most to support them.
Lüroth's problem concerns subextensions L of K(X), the rational functions in the single indeterminate X. Any such field is either equal to K or is also rational, i.e. L = K(F) for some rational function F. In geometrical terms this states that a non-constant rational map from the projective line to a curve C can only occur when C also has genus 0.