Search results
Results from the WOW.Com Content Network
Plot of the Chebyshev polynomial of the first kind () with = in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D. The Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as () and ().
The Chebyshev nodes of the second kind, also called the Chebyshev extrema, are the extrema of the Chebyshev polynomials of the first kind, which are also the zeros of the Chebyshev polynomials of the second kind. Both of these sets of numbers are commonly referred to as Chebyshev nodes in literature. [1]
Chebyshev's equation is the second order linear differential equation + = where p is a real (or complex) constant. The equation is named after Russian mathematician Pafnuty Chebyshev. The solutions can be obtained by power series:
What links here; Upload file; Special pages; Printable version; Page information; Get shortened URL; Download QR code
Some authors use versions of these polynomials that have been shifted so that the interval of orthogonality is [0, 1] or [−2, 2]. There are also Chebyshev polynomials of the second kind, denoted . We have: = + + ′.
Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory. NY: Wiley. 1990; 249 pages, revised 2nd edition of The Chebyshev Polynomials ; addition of about 80 exercises, a chapter introducing some elementary algebraic and number theoretic properties of the Chebyshev polynomials, and additional coverage of the polynomials ...
Plot of the hypergeometric function 2F1(a,b; c; z) with a=2 and b=3 and c=4 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D In mathematics , the Gaussian or ordinary hypergeometric function 2 F 1 ( a , b ; c ; z ) is a special function represented by the hypergeometric series , that ...
In mathematics, discrete Chebyshev polynomials, or Gram polynomials, are a type of discrete orthogonal polynomials used in approximation theory, introduced by Pafnuty Chebyshev [1] and rediscovered by Gram. [2] They were later found to be applicable to various algebraic properties of spin angular momentum.