Search results
Results from the WOW.Com Content Network
[1]: 117 The formula above is known as the Langevin paramagnetic equation. Pierre Curie found an approximation to this law that applies to the relatively high temperatures and low magnetic fields used in his experiments. As temperature increases and magnetic field decreases, the argument of the hyperbolic tangent decreases.
Assuming the external magnetic field is uniform and shares a common axis with the paramagnet, the extensive parameter characterizing the magnetic state is , the magnetic dipole moment of the system. The fundamental thermodynamic relation describing the system will then be of the form U = U ( S , V , I , N ) {\displaystyle U=U(S,V,I,N)} .
The effect is weak because it depends on the magnitude of the induced magnetic moment. It depends on the number of electron pairs and the chemical nature of the atoms to which they belong. This means that the effects are additive, and a table of "diamagnetic contributions", or Pascal's constants , can be put together.
The Curie temperature of nanoparticles is also affected by the crystal lattice structure: body-centred cubic (bcc), face-centred cubic (fcc), and a hexagonal structure (hcp) all have different Curie temperatures due to magnetic moments reacting to their neighbouring electron spins. fcc and hcp have tighter structures and as a results have ...
Here μ 0 is the permeability of free space; M the magnetization (magnetic moment per unit volume), B = μ 0 H is the magnetic field, and C the material-specific Curie constant: = (+), where k B is the Boltzmann constant, N the number of magnetic atoms (or molecules) per unit volume, g the Landé g-factor, μ B the Bohr magneton, J the angular ...
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
The Biot–Savart law can be used in the calculation of magnetic responses even at the atomic or molecular level, e.g. chemical shieldings or magnetic susceptibilities, provided that the current density can be obtained from a quantum mechanical calculation or theory.
There are two London equations when expressed in terms of measurable fields: =, =. Here is the (superconducting) current density, E and B are respectively the electric and magnetic fields within the superconductor, is the charge of an electron or proton, is electron mass, and is a phenomenological constant loosely associated with a number density of superconducting carriers.