Search results
Results from the WOW.Com Content Network
Kruskal's algorithm [1] finds a minimum spanning forest of an undirected edge-weighted graph. If the graph is connected , it finds a minimum spanning tree . It is a greedy algorithm that in each step adds to the forest the lowest-weight edge that will not form a cycle . [ 2 ]
An animation of generating a 30 by 20 maze using Kruskal's algorithm. This algorithm is a randomized version of Kruskal's algorithm. Create a list of all walls, and create a set for each cell, each containing just that one cell. For each wall, in some random order: If the cells divided by this wall belong to distinct sets: Remove the current wall.
A third algorithm commonly in use is Kruskal's algorithm, which also takes O(m log n) time. A fourth algorithm, not as commonly used, is the reverse-delete algorithm, which is the reverse of Kruskal's algorithm. Its runtime is O(m log n (log log n) 3). All four of these are greedy algorithms.
Similarly to Prim's algorithm there are components in Kruskal's approach that can not be parallelised in its classical variant. For example, determining whether or not two vertices are in the same subtree is difficult to parallelise, as two union operations might attempt to join the same subtrees at the same time.
Examples of such greedy algorithms are Kruskal's algorithm and Prim's algorithm for finding minimum spanning trees and the algorithm for finding optimum Huffman trees. Greedy algorithms appear in the network routing as well. Using greedy routing, a message is forwarded to the neighbouring node which is "closest" to the destination.
For example, Kruskal's algorithm processes edges in turn, deciding whether to include the edge in the MST based on whether it would form a cycle with all previously chosen edges. Both Prim's algorithm and Kruskal's algorithm require processes to know the state of the whole graph, which is very difficult to discover in the message-passing model.
Other well-known algorithms for this problem include Kruskal's algorithm and Borůvka's algorithm. [8] These algorithms find the minimum spanning forest in a possibly disconnected graph; in contrast, the most basic form of Prim's algorithm only finds minimum spanning trees in connected graphs.
In statistics, Kruskal's most influential work is his seminal contribution to the formulation of multidimensional scaling. In computer science, his best known work is Kruskal's algorithm for computing the minimal spanning tree (MST) of a weighted graph. The algorithm first orders the edges by weight and then proceeds through the ordered list ...