Search results
Results from the WOW.Com Content Network
The fact that the triple-angle formula for sine and cosine only involves powers of a single function allows one to relate the geometric problem of a compass and straightedge construction of angle trisection to the algebraic problem of solving a cubic equation, which allows one to prove that trisection is in general impossible using the given tools.
This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...
A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x -axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).
Then exchange all the cosine and sine terms to cosh and sinh terms. However, for all products or implied products of two sine terms replace it with the negative product of two sinh terms. This is because − i sin ( i x ) {\displaystyle -i\sin(ix)} is equivalent to sinh ( x ) {\displaystyle \sinh(x)} , so when multiplied to together the ...
Circles about the points (0,0), (0,1), (0,2) and (0,3) of radius 3.5 in the Lobachevsky hyperbolic coordinates. Construct a Cartesian-like coordinate system as follows. Choose a line (the x -axis) in the hyperbolic plane (with a standardized curvature of -1) and label the points on it by their distance from an origin ( x =0) point on the x ...
If P 0 is taken to be the point (1, 1), P 1 the point (x 1, 1/x 1), and P 2 the point (x 2, 1/x 2), then the parallel condition requires that Q be the point (x 1 x 2, 1/x 1 1/x 2). It thus makes sense to define the hyperbolic angle from P 0 to an arbitrary point on the curve as a logarithmic function of the point's value of x. [1] [2]
A calculation confirms that z(0) = 1, and z is a constant so z = 1 for all x, so the Pythagorean identity is established. A similar proof can be completed using power series as above to establish that the sine has as its derivative the cosine, and the cosine has as its derivative the negative sine.
Many other mathematical objects have their origin in the hyperbola, such as hyperbolic paraboloids (saddle surfaces), hyperboloids ("wastebaskets"), hyperbolic geometry (Lobachevsky's celebrated non-Euclidean geometry), hyperbolic functions (sinh, cosh, tanh, etc.), and gyrovector spaces (a geometry proposed for use in both relativity and ...