Search results
Results from the WOW.Com Content Network
Substitution, written M[x := N], is the process of replacing all free occurrences of the variable x in the expression M with expression N. Substitution on terms of the lambda calculus is defined by recursion on the structure of terms, as follows (note: x and y are only variables while M and N are any lambda expression): x[x := N] = N
The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations. Computer algebra system often include facilities for graphing equations and provide a programming language for the users' own procedures.
are equivalent to Newton's equations for the function =, where T is the kinetic, and V the potential energy. In fact, when the substitution is chosen well (exploiting for example symmetries and constraints of the system) these equations are much easier to solve than Newton's equations in Cartesian coordinates.
To solve the equations, we choose a relaxation factor = and an initial guess vector = (,,,). According to the successive over-relaxation algorithm, the following table is obtained, representing an exemplary iteration with approximations, which ideally, but not necessarily, finds the exact solution, (3, −2, 2, 1) , in 38 steps.
Indeed, multiplying each equation of the second auxiliary system by , adding with the corresponding equation of the first auxiliary system and using the representation = +, we immediately see that equations number 2 through n of the original system are satisfied; it only remains to satisfy equation number 1.
The substitution instance tσ of a ground substitution is a ground term if all of t ' s variables are in σ ' s domain, i.e. if vars(t) ⊆ dom(σ). A substitution σ is called a linear substitution if tσ is a linear term for some (and hence every) linear term t containing precisely the variables of σ ' s domain, i.e. with vars(t) = dom(σ).
Nondimensionalization is the partial or full removal of physical dimensions from an equation involving physical quantities by a suitable substitution of variables.This technique can simplify and parameterize problems where measured units are involved.
The substitution operator is also used. The expression [:=] means substitute every occurrence of G in L by S and return the expression. The definition used is extended to cover the substitution of expressions, from the definition given on the Lambda calculus page. The matching of expressions should compare expressions for alpha equivalence ...