enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nyquist–Shannon sampling theorem - Wikipedia

    en.wikipedia.org/wiki/Nyquist–Shannon_sampling...

    The Nyquist–Shannon sampling theorem is an essential principle for digital signal processing linking the frequency range of a signal and the sample rate required to avoid a type of distortion called aliasing. The theorem states that the sample rate must be at least twice the bandwidth of the signal to avoid aliasing.

  3. Channel capacity - Wikipedia

    en.wikipedia.org/wiki/Channel_capacity

    This result is known as the Shannon–Hartley theorem. [11] When the SNR is large (SNR ≫ 0 dB), the capacity ⁡ ¯ is logarithmic in power and approximately linear in bandwidth. This is called the bandwidth-limited regime.

  4. Shannon–Hartley theorem - Wikipedia

    en.wikipedia.org/wiki/Shannon–Hartley_theorem

    In the simple version above, the signal and noise are fully uncorrelated, in which case + is the total power of the received signal and noise together. A generalization of the above equation for the case where the additive noise is not white (or that the ⁠ / ⁠ is not constant with frequency over the bandwidth) is obtained by treating the channel as many narrow, independent Gaussian ...

  5. Noisy-channel coding theorem - Wikipedia

    en.wikipedia.org/wiki/Noisy-channel_coding_theorem

    Stated by Claude Shannon in 1948, the theorem describes the maximum possible efficiency of error-correcting methods versus levels of noise interference and data corruption. Shannon's theorem has wide-ranging applications in both communications and data storage. This theorem is of foundational importance to the modern field of information theory ...

  6. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    the mutual information, and the channel capacity of a noisy channel, including the promise of perfect loss-free communication given by the noisy-channel coding theorem; the practical result of the Shannon–Hartley law for the channel capacity of a Gaussian channel; as well as; the bit—a new way of seeing the most fundamental unit of information.

  7. Nonuniform sampling - Wikipedia

    en.wikipedia.org/wiki/Nonuniform_sampling

    Nonuniform sampling is a branch of sampling theory involving results related to the Nyquist–Shannon sampling theorem. Nonuniform sampling is based on Lagrange interpolation and the relationship between itself and the (uniform) sampling theorem. Nonuniform sampling is a generalisation of the Whittaker–Shannon–Kotelnikov (WSK) sampling theorem.

  8. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...

  9. Shannon's source coding theorem - Wikipedia

    en.wikipedia.org/wiki/Shannon's_source_coding...

    In information theory, the source coding theorem (Shannon 1948) [2] informally states that (MacKay 2003, pg. 81, [3] Cover 2006, Chapter 5 [4]): N i.i.d. random variables each with entropy H(X) can be compressed into more than N H(X) bits with negligible risk of information loss, as N → ∞; but conversely, if they are compressed into fewer than N H(X) bits it is virtually certain that ...