enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 96 (number) - Wikipedia

    en.wikipedia.org/wiki/96_(number)

    The number of divisors of 96 is 12. [6] As no smaller number has more than 12 divisors, 96 is a largely composite number. [7] Skilling's figure, a degenerate uniform polyhedron, has a Euler characteristic = Every integer greater than 96 may be represented as a sum of distinct super-prime numbers.

  3. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m , for which n / m is again an integer (which is necessarily also a divisor of n ). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).

  4. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    The basic rule for divisibility by 4 is that if the number formed by the last two digits in a number is divisible by 4, the original number is divisible by 4; [2] [3] this is because 100 is divisible by 4 and so adding hundreds, thousands, etc. is simply adding another number that is divisible by 4. If any number ends in a two digit number that ...

  5. Refactorable number - Wikipedia

    en.wikipedia.org/wiki/Refactorable_number

    A refactorable number or tau number is an integer n that is divisible by ... 72, 80, 84, 88, 96 ... Zelinsky proved that no three consecutive integers can all be ...

  6. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    Prime numbers have exactly 2 divisors, and highly composite numbers are in bold. 7 is a divisor of 42 because =, so we can say It can also be said that 42 is divisible by 7, 42 is a multiple of 7, 7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2, 3, −3.

  7. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    m is a divisor of n (also called m divides n, or n is divisible by m) if all prime factors of m have at least the same multiplicity in n. The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then ...

  8. Division lattice - Wikipedia

    en.wikipedia.org/wiki/Division_lattice

    The prime numbers are precisely the atoms of the division lattice, namely those natural numbers divisible only by themselves and 1. [ 2 ] For any square-free number n , its divisors form a Boolean algebra that is a sublattice of the division lattice.

  9. Abundant number - Wikipedia

    en.wikipedia.org/wiki/Abundant_number

    The smallest abundant number not divisible by 2 or by 3 is 5391411025 whose distinct prime factors are 5, 7, 11, 13, 17, 19, 23, and 29 (sequence A047802 in the OEIS). An algorithm given by Iannucci in 2005 shows how to find the smallest abundant number not divisible by the first k primes. [1]