Search results
Results from the WOW.Com Content Network
One example is the liquid–vapor critical point, the end point of the pressure–temperature curve that designates conditions under which a liquid and its vapor can coexist. At higher temperatures, the gas comes into a supercritical phase, and so cannot be liquefied by pressure alone.
The point at the very top of the dome is called the critical point. This point is where the saturated liquid and saturated vapor lines meet. Past this point, it is impossible for a liquid–vapor transformation to occur. [3] It is also where the critical temperature and critical pressure meet.
Liquid properties Std enthalpy change of formation, Δ f H o liquid: −118.910 kJ/mol Standard molar entropy, S o liquid: 171.0 J/(mol K) Heat capacity, c p: 98.36 J/(mol K) Gas properties Std enthalpy change of formation, Δ f H o gas: −104.7 kJ/mol Standard molar entropy, S o gas: 269.91 J/(mol K) Enthalpy of combustion, Δ c H o: −2220. ...
As the critical temperature is approached (300 K), the density of the gas at equilibrium becomes higher, and that of the liquid lower. At the critical point, (304.1 K and 7.38 MPa (73.8 bar)), there is no difference in density, and the 2 phases become one fluid phase. Thus, above the critical temperature a gas cannot be liquefied by pressure.
The heat of vaporization diminishes with increasing temperature and it vanishes completely at a certain point called the critical temperature (T r = 1). Above the critical temperature, the liquid and vapor phases are indistinguishable, and the substance is called a supercritical fluid.
The equilibrium conditions are shown as curves on a curved surface in 3D with areas for solid, liquid, and vapor phases and areas where solid and liquid, solid and vapor, or liquid and vapor coexist in equilibrium. A line on the surface called a triple line is where solid, liquid and vapor can all coexist in equilibrium. The critical point ...
It is useful to note that for N 2 the normal boiling point of the liquid is 77.4 K and the critical point is at 126.2 K and 34.0 bar. Overview of the temperature and pressure dependence of the compressibility factor for N 2. The figure on the right shows an overview covering a wide temperature range.
However, different criteria still allow to distinguish liquid-like and more gas-like states of a supercritical fluid. These criteria result in different boundaries in the pT plane. These lines emanate either from the critical point, or from the liquid–vapor boundary (boiling curve) somewhat below the critical point.