Search results
Results from the WOW.Com Content Network
Astatine is a chemical element; it has symbol At and atomic number 85. It is the rarest naturally occurring element in the Earth's crust, occurring only as the decay product of various heavier elements. All of astatine's isotopes are short-lived; the most stable is astatine-210, with a half-life of 8.1 hours.
85 At astatine (At 2) use: 503±3 K: 230±3 °C: ... Periodic Table format. Boiling point of the elements in the periodic table.
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 3; Table 3.2 Physical Constants of Inorganic Compounds Unit is °C Hoffer et al.
{{Infobox element}}; labels & notes: (Image) GENERAL PROPERTIES Name Symbol Pronunciation (data central) Alternative name(s) Allotropes Appearance <element> IN THE PERIODIC TABLE Periodic table Atomic number Standard atomic weight (data central) Element category (also header bg color) (sets header bg color, over 'series='-color) Group Period ...
The following table gives the crystalline structure of the most thermodynamically stable form(s) for elements that are solid at standard temperature and pressure. Each element is shaded by a color representing its respective Bravais lattice, except that all orthorhombic lattices are grouped together.
All of astatine's isotopes are short-lived; the most stable is astatine-210, with a half-life of 8.1 hours. Astatine is sometimes described as probably being a black solid (assuming it follows this trend), or as having a metallic appearance. Astatine is predicted to be a semiconductor, with a band gap of about 0.7 eV.
Periodic table of the chemical elements showing the most or more commonly named sets of elements (in periodic tables), and a traditional dividing line between metals and nonmetals. The f-block actually fits between groups 2 and 3 ; it is usually shown at the foot of the table to save horizontal space.
Astatine has 23 nuclear isomers (nuclei with one or more nucleons – protons or neutrons – in an excited state). A nuclear isomer may also be called a "meta-state"; this means the system has more internal energy than the "ground state" (the state with the lowest possible internal energy), making the former likely to decay into the latter ...