enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dadda multiplier - Wikipedia

    en.wikipedia.org/wiki/Dadda_multiplier

    The Dadda multiplier is a hardware binary multiplier design invented by computer scientist Luigi Dadda in 1965. [1] It uses a selection of full and half adders to sum the partial products in stages (the Dadda tree or Dadda reduction) until two numbers are left.

  3. Kogge–Stone adder - Wikipedia

    en.wikipedia.org/wiki/Kogge–Stone_adder

    An example of a 4-bit Kogge–Stone adder is shown in the diagram. Each vertical stage produces a "propagate" and a "generate" bit, as shown. The culminating generate bits (the carries) are produced in the last stage (vertically), and these bits are XOR'd with the initial propagate after the input (the red boxes) to produce the sum bits. E.g., the first (least-significant) sum bit is ...

  4. Wallace tree - Wikipedia

    en.wikipedia.org/wiki/Wallace_tree

    The Wallace tree is a variant of long multiplication.The first step is to multiply each digit (each bit) of one factor by each digit of the other. Each of these partial products has weight equal to the product of its factors.

  5. Adder (electronics) - Wikipedia

    en.wikipedia.org/wiki/Adder_(electronics)

    With the addition of an OR gate to combine their carry outputs, two half adders can be combined to make a full adder. [2] The half adder adds two input bits and generates a carry and sum, which are the two outputs of a half adder. The input variables of a half adder are called the augend and addend bits. The output variables are the sum and carry.

  6. Convolutional code - Wikipedia

    en.wikipedia.org/wiki/Convolutional_code

    To convolutionally encode data, start with k memory registers, each holding one input bit.Unless otherwise specified, all memory registers start with a value of 0. The encoder has n modulo-2 adders (a modulo 2 adder can be implemented with a single Boolean XOR gate, where the logic is: 0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 = 0), and n generator polynomials — one for each adder (see figure below).

  7. Brent–Kung adder - Wikipedia

    en.wikipedia.org/wiki/Brent–Kung_adder

    A Brent–Kung adder is a parallel adder made in a regular layout with an aim of minimizing the chip area and ease of manufacturing. The addition of n-bit number can be performed in time O ( log 2 ⁡ n ) {\displaystyle O(\log _{2}n)} with a chip size of area O ( n log 2 ⁡ n ) , {\displaystyle O(n\log _{2}n),} thus making it a good-choice ...

  8. Carry-save adder - Wikipedia

    en.wikipedia.org/wiki/Carry-save_adder

    A carry-save adder [1] [2] [nb 1] is a type of digital adder, used to efficiently compute the sum of three or more binary numbers. It differs from other digital adders in that it outputs two (or more) numbers, and the answer of the original summation can be achieved by adding these outputs together.

  9. Carry-select adder - Wikipedia

    en.wikipedia.org/wiki/Carry-select_adder

    A conditional sum adder [3] is a recursive structure based on the carry-select adder. In the conditional sum adder, the MUX level chooses between two n/2-bit inputs that are themselves built as conditional-sum adder. The bottom level of the tree consists of pairs of 2-bit adders (1 half adder and 3 full adders) plus 2 single-bit multiplexers.