enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 33 (number) - Wikipedia

    en.wikipedia.org/wiki/33_(number)

    Where 33 is the seventh number divisible by the number of prime numbers below it (eleven), [13] the product = is the seventh numerator of harmonic number, [14] where specifically, the previous such numerators are 49 and 137, which are respectively the thirty-third composite and prime numbers.

  3. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    The basic rule for divisibility by 4 is that if the number formed by the last two digits in a number is divisible by 4, the original number is divisible by 4; [2] [3] this is because 100 is divisible by 4 and so adding hundreds, thousands, etc. is simply adding another number that is divisible by 4. If any number ends in a two digit number that ...

  4. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    Plot of the number of divisors of integers from 1 to 1000. Highly composite numbers are in bold and superior highly composite numbers are starred. ... 24, 33, 36, 44 ...

  5. Palindromic number - Wikipedia

    en.wikipedia.org/wiki/Palindromic_number

    There are 9 palindromic numbers with two digits: {11, 22, 33, 44, 55, 66, 77, 88, 99}. All palindromic numbers with an even number of digits are divisible by 11. [1]

  6. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.

  7. Division by zero - Wikipedia

    en.wikipedia.org/wiki/Division_by_zero

    In IEEE arithmetic, division of 0/0 or ∞/∞ results in NaN, but otherwise division always produces a well-defined result. Dividing any non-zero number by positive zero (+0) results in an infinity of the same sign as the dividend. Dividing any non-zero number by negative zero (−0

  8. Abundant number - Wikipedia

    en.wikipedia.org/wiki/Abundant_number

    The smallest abundant number not divisible by 2 or by 3 is 5391411025 whose distinct prime factors are 5, 7, 11, 13, 17, 19, 23, and 29 (sequence A047802 in the OEIS). An algorithm given by Iannucci in 2005 shows how to find the smallest abundant number not divisible by the first k primes. [1]

  9. Square-free integer - Wikipedia

    en.wikipedia.org/wiki/Square-free_integer

    In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 3 2. The smallest ...