Search results
Results from the WOW.Com Content Network
Boole's expansion theorem, often referred to as the Shannon expansion or decomposition, is the identity: = + ′ ′, where is any Boolean function, is a variable, ′ is the complement of , and and ′ are with the argument set equal to and to respectively.
All attempts to grapple with atomic phenomena using classical physics were eventually frustrated, he wrote, leading to the recognition that those phenomena have "complementary aspects". But classical physics can be generalized to address this, and with "astounding simplicity", by describing physical quantities using non-commutative algebra. [13]
The term "Boolean algebra" honors George Boole (1815–1864), a self-educated English mathematician. He introduced the algebraic system initially in a small pamphlet, The Mathematical Analysis of Logic, published in 1847 in response to an ongoing public controversy between Augustus De Morgan and William Hamilton, and later as a more substantial book, The Laws of Thought, published in 1854.
All concrete Boolean algebras satisfy the laws (by proof rather than fiat), whence every concrete Boolean algebra is a Boolean algebra according to our definitions. This axiomatic definition of a Boolean algebra as a set and certain operations satisfying certain laws or axioms by fiat is entirely analogous to the abstract definitions of group ...
Boolean algebra is a mathematically rich branch of abstract algebra. Stanford Encyclopaedia of Philosophy defines Boolean algebra as 'the algebra of two-valued logic with only sentential connectives, or equivalently of algebras of sets under union and complementation.' [1] Just as group theory deals with groups, and linear algebra with vector spaces, Boolean algebras are models of the ...
Hasse diagram of a complemented lattice. A point p and a line l of the Fano plane are complements if and only if p does not lie on l.. In the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b satisfying a ∨ b = 1 and a ∧ b = 0.
If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...
For a complete boolean algebra infinite de-Morgan's laws hold. A Boolean algebra is complete if and only if its Stone space of prime ideals is extremally disconnected. Sikorski's extension theorem states that if A is a subalgebra of a Boolean algebra B, then any homomorphism from A to a complete Boolean algebra C can be extended to a morphism ...