Search results
Results from the WOW.Com Content Network
Lattices, partial orders in which each pair of elements has a greatest lower bound and a least upper bound. Many different types of lattice have been studied; see map of lattices for a list. Partially ordered sets (or posets), orderings in which some pairs are comparable and others might not be
The ordered pair (a, b) is different from the ordered pair (b, a), unless a = b. In contrast, the unordered pair, denoted {a, b}, always equals the unordered pair {b, a}. Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional ...
Given a set X, a relation R over X is a set of ordered pairs of elements from X, formally: R ⊆ { (x,y) | x, y ∈ X}. [2] [10] The statement (x,y) ∈ R reads "x is R-related to y" and is written in infix notation as xRy. [7] [8] The order of the elements is important; if x ≠ y then yRx can be true or false independently of xRy.
A concept in set theory and logic that categorizes well-ordered sets by their structure, such that two sets have the same order type if there is a bijective function between them that preserves order. ordinal 1. An ordinal is the order type of a well-ordered set, usually represented by a von Neumann ordinal, a transitive set well ordered by ∈. 2.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
It follows that, two ordered pairs (a,b) and (c,d) are equal if and only if a = c and b = d. Alternatively, an ordered pair can be formally thought of as a set {a,b} with a total order. (The notation (a, b) is also used to denote an open interval on the real number line, but the context should make it clear which meaning is intended.
List of set identities and relations – Equalities for combinations of sets; List of types of functions This page was last edited on 20 April 2024, at 21:36 ...
With a dot over it, it is the class of ordered pairs. With the subscript r it is the class of unequal ordered pairs. *54.02, *56.01, *56.02 An ordered pair *55.01 Cl Short for "class". The powerset relation *60.01 Cl ex The relation saying that one class is the set of non-empty classes of another *60.02 Cls 2, Cls 3