Search results
Results from the WOW.Com Content Network
Ray tracing of a beam of light passing through a medium with changing refractive index.The ray is advanced by a small amount, and then the direction is re-calculated. Ray tracing works by assuming that the particle or wave can be modeled as a large number of very narrow beams (), and that there exists some distance, possibly very small, over which such a ray is locally straight.
Ray tracing is a method for calculating the path of waves or particles through a system. The method is practiced in two distinct forms: The method is practiced in two distinct forms: Ray tracing (physics) , which is used for analyzing optical and other systems
Propagation of a ray through a layer. The transfer-matrix method is a method used in optics and acoustics to analyze the propagation of electromagnetic or acoustic waves through a stratified medium; a stack of thin films. [1] [2] This is, for example, relevant for the design of anti-reflective coatings and dielectric mirrors.
The ray tracing technique is based on two reference planes, called the input and output planes, each perpendicular to the optical axis of the system. At any point along the optical train an optical axis is defined corresponding to a central ray; that central ray is propagated to define the optical axis further in the optical train which need ...
The principal ray or chief ray (sometimes known as the b ray) in an optical system is the meridional ray that starts at an edge of an object and passes through the center of the aperture stop. [ 5 ] [ 8 ] [ 7 ] The distance between the chief ray (or an extension of it for a virtual image) and the optical axis at an image location defines the ...
A ray trace through a prism with apex angle α. Regions 0, 1, and 2 have indices of refraction, , and , and primed angles ′ indicate the ray's angle after refraction.. Ray angle deviation and dispersion through a prism can be determined by tracing a sample ray through the element and using Snell's law at each interface.
This recursive ray tracing of reflective colored spheres on a white surface demonstrates the effects of shallow depth of field, "area" light sources, and diffuse interreflection. (c. 2008) In 3D computer graphics, ray tracing is a technique for modeling light transport for use in a wide variety of rendering algorithms for generating digital images.
For example, say that the measured trace consists of 128 points in the delay direction and 128 points in the frequency direction. There are 128×128 total points in the trace. Using these points, an electric field is retrieved that has 2×128 points (128 for magnitude and another 128 for the phase).