Search results
Results from the WOW.Com Content Network
Because the entire inner loop is performed for each iteration of the outer loop, optimizations of the inner loop will have much greater effect than optimizations of the outer loop. In many languages there are at least two types of loops – for loops and while loops – and they can be nested within each other. [ 1 ]
The comprehension is implemented as a macro that is expanded at compile time, you can see the expanded code using the expandMacro compiler option: var collectResult = newSeq ( Natural ( 0 )) for item in items ( @[- 9 , 1 , 42 , 0 , - 1 , 9 ] ): add ( collectResult , item + 1 ) collectResult
The code "inside" the loop (the body of the loop, shown below as xxx) is obeyed a specified number of times, or once for each of a collection of items, or until some condition is met, or indefinitely. When one of those items is itself also a loop, it is called a "nested loop". [4] [5] [6]
Loop-invariant code motion – this can vastly improve efficiency by moving a computation from inside the loop to outside of it, computing a value just once before the loop begins, if the resultant quantity of the calculation will be the same for every loop iteration (i.e., a loop-invariant quantity). This is particularly important with address ...
Instance-wise analysis and transformation allows the polyhedral model to unify additional transformations (such as index set splitting, loop peeling, tiling, loop fusion or fission, and transformation of imperfectly nested loops) with those already unified by the unimodular framework (such as loop interchange, skewing, and reversal of perfectly ...
Nested functions can be used for unstructured control flow, by using the return statement for general unstructured control flow.This can be used for finer-grained control than is possible with other built-in features of the language – for example, it can allow early termination of a for loop if break is not available, or early termination of a nested for loop if a multi-level break or ...
A block-nested loop (BNL) is an algorithm used to join two relations in a relational database. [ 1 ] This algorithm [ 2 ] is a variation of the simple nested loop join and joins two relations R {\displaystyle R} and S {\displaystyle S} (the "outer" and "inner" join operands, respectively).
(Nested loops occur when one loop is inside of another loop.) One classical usage is to reduce memory access latency or the cache bandwidth necessary due to cache reuse for some common linear algebra algorithms. The technique used to produce this optimization is called loop tiling, [1] also known as loop blocking [2] or strip mine and interchange.