Search results
Results from the WOW.Com Content Network
Note: "lc" stands for the leading coefficient, the coefficient of the highest degree of the variable. This algorithm computes not only the greatest common divisor (the last non zero r i), but also all the subresultant polynomials: The remainder r i is the (deg(r i−1) − 1)-th subresultant polynomial.
If two or more factors of a polynomial are identical, then the polynomial is a multiple of the square of this factor. The multiple factor is also a factor of the polynomial's derivative (with respect to any of the variables, if several). For univariate polynomials, multiple factors are equivalent to multiple roots (over a suitable extension field).
In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or any expression. For example, in the polynomial 7 x 2 − 3 x y + 1.5 + y , {\displaystyle 7x^{2}-3xy+1.5+y,} with variables x {\displaystyle x} and y {\displaystyle y} , the first two terms have the coefficients 7 and −3.
p is an integer factor of the constant term a 0, and; q is an integer factor of the leading coefficient a n. The rational root theorem is a special case (for a single linear factor) of Gauss's lemma on the factorization of polynomials. The integral root theorem is the special case of the rational root theorem when the leading coefficient is a n ...
A matrix is said to be in reduced row echelon form if furthermore all of the leading coefficients are equal to 1 (which can be achieved by using the elementary row operation of type 2), and in every column containing a leading coefficient, all of the other entries in that column are zero (which can be achieved by using elementary row operations ...
The leading term of a polynomial is thus the term of the largest monomial (for the chosen monomial ordering). Concretely, let R be any ring of polynomials. Then the set M of the (monic) monomials in R is a basis of R , considered as a vector space over the field of the coefficients.
This is done in two steps. The first step uses the formal derivative of f to find all the factors with multiplicity not divisible by p. The second step identifies the remaining factors. As all of the remaining factors have multiplicity divisible by p, meaning they are powers of p, one can simply take the pth square root and apply recursion.
The numbers a, b, and c are the coefficients of the equation and may be distinguished by respectively calling them, the quadratic coefficient, the linear coefficient and the constant coefficient or free term. [2] The values of x that satisfy the equation are called solutions of the equation, and roots or zeros of the quadratic function on its ...