Search results
Results from the WOW.Com Content Network
The effects of the NAD + /NADH ratio are complex, controlling the activity of several key enzymes, including glyceraldehyde 3-phosphate dehydrogenase and pyruvate dehydrogenase. In healthy mammalian tissues, estimates of the ratio of free NAD + to NADH in the cytoplasm typically lie around 700:1; the ratio is thus favorable for oxidative reactions.
NADH dehydrogenase is used in the electron transport chain for generation of ATP. The EC term NADH dehydrogenase (quinone) (EC 1.6.5.11) is defined for NADH dehydrogenases that use a quinone (excluding ubiquinone) as the acceptor. The EC term NADH dehydrogenase (ubiquinone) (EC 7.1.1.2) is defined for those with ubiquinone as the acceptor.
In enzymology, a glutamate synthase (NADH) (EC 1.4.1.14) is an enzyme that catalyzes the chemical reaction. 2 L-glutamate + NAD + L-glutamine + 2-oxoglutarate + NADH + H + Glutamate synthase facilitates the ammonium assimilation pathway, which follows the enzymes, nitrite reductase and glutamine synthase. [1]
In enzymology, a NADH peroxidase (EC 1.11.1.1) is an enzyme that catalyzes the chemical reaction. NADH + H + + H 2 O 2 NAD + + 2 H 2 O. The presumed function of NADH peroxidase is to inactivate H 2 O 2 generated within the cell, for example by glycerol-3-phosphate oxidase during glycerol metabolism or dismutation of superoxide, before the H 2 O 2 causes damage to essential cellular components.
The 3 substrates of this enzyme are NADH, H +, and monodehydroascorbate, whereas its two products are NAD + and ascorbate. This enzyme belongs to the family of oxidoreductases, specifically those acting on NADH or NADPH, with a quinone or similar compound as an acceptor. The systematic name of this enzyme class is NADH: monodehydroascorbate ...
In enzymology, a hydroxylamine reductase (NADH) (EC 1.7.1.10) is an enzyme that catalyzes the chemical reaction.. NH 3 + NAD + + H 2 O hydroxylamine + NADH + H +. The 3 substrates of this enzyme are NH 3, NAD +, and H 2 O, whereas its 3 products are hydroxylamine, NADH, and H +.
NADH is an example of a natural electron donor. [4] Ascorbic acid is another example. It is a water-soluble antioxidant. [5] In biology, electron donors release an electron during cellular respiration, resulting in the release of energy. Microorganisms, such as bacteria, obtain energy in electron transfer processes. Through its cellular ...
The systematic name of this enzyme class is ATP:NADH 2'-phosphotransferase. Other names in common use include reduced nicotinamide adenine dinucleotide kinase (phosphorylating) , DPNH kinase , reduced diphosphopyridine nucleotide kinase , and NADH kinase .