enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Whitehead theorem - Wikipedia

    en.wikipedia.org/wiki/Whitehead_theorem

    For instance, take X= S 2 × RP 3 and Y= RP 2 × S 3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S 2 × S 3; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the Künneth formula); thus, X and Y are not ...

  3. CW complex - Wikipedia

    en.wikipedia.org/wiki/CW_complex

    CW complexes satisfy the Whitehead theorem: a map between CW complexes is a homotopy equivalence if and only if it induces an isomorphism on all homotopy groups. A covering space of a CW complex is also a CW complex. [13] The product of two CW complexes can be made into a CW complex.

  4. Alexander duality - Wikipedia

    en.wikipedia.org/wiki/Alexander_duality

    Through further reductions, it is possible to identify the homology of with the cohomology of . This is useful in algebraic geometry for computing the cohomology groups of projective varieties , and is exploited for constructing a basis of the Hodge structure of hypersurfaces of degree d {\displaystyle d} using the Jacobian ring .

  5. Algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Algebraic_topology

    Fundamental groups and homology and cohomology groups are not only invariants of the underlying topological space, in the sense that two topological spaces which are homeomorphic have the same associated groups, but their associated morphisms also correspond—a continuous mapping of spaces induces a group homomorphism on the associated groups ...

  6. Pontryagin product - Wikipedia

    en.wikipedia.org/wiki/Pontryagin_product

    Given an H-space with multiplication :, the Pontryagin product on homology is defined by the following composition of maps (;) (;) (;) (;)where the first map is the cross product defined above and the second map is given by the multiplication of the H-space followed by application of the homology functor to obtain a homomorphism on the level of homology.

  7. Homotopy groups of spheres - Wikipedia

    en.wikipedia.org/wiki/Homotopy_groups_of_spheres

    In this table, the entries are either a) the trivial group 0, the infinite cyclic group Z, b) the finite cyclic groups of order n (written as Z n), or c) the direct products of such groups (written, for example, as Z 24 ×Z 3 or Z 2 2 = Z 2 ×Z 2). Extended tables of homotopy groups of spheres are given at the end of the article.

  8. Spanier–Whitehead duality - Wikipedia

    en.wikipedia.org/wiki/Spanier–Whitehead_duality

    In mathematics, Spanier–Whitehead duality is a duality theory in homotopy theory, based on a geometrical idea that a topological space X may be considered as dual to its complement in the n-sphere, where n is large enough. Its origins lie in Alexander duality theory, in homology theory, concerning complements in manifolds.

  9. Hopf invariant - Wikipedia

    en.wikipedia.org/wiki/Hopf_invariant

    It is a theorem, proved first by Frank Adams, and subsequently by Adams and Michael Atiyah with methods of topological K-theory, that these are the only maps with Hopf invariant 1. Whitehead integral formula