Search results
Results from the WOW.Com Content Network
In coordinate-free terms, the gradient of a function () may be defined by: d f = ∇ f ⋅ d r {\displaystyle df=\nabla f\cdot d\mathbf {r} } where d f {\displaystyle df} is the total infinitesimal change in f {\displaystyle f} for an infinitesimal displacement d r {\displaystyle d\mathbf {r} } , and is seen to be maximal when d r ...
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.
In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: = = (, , ) (, , ) = + +. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
In spherical coordinates in N dimensions, with the parametrization x = rθ ∈ R N with r representing a positive real radius and θ an element of the unit sphere S N−1, = + + where Δ S N−1 is the Laplace–Beltrami operator on the (N − 1)-sphere, known as the spherical Laplacian.
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
If ,, are the contravariant basis vectors in a curvilinear coordinate system, with coordinates of points denoted by (,,), then the gradient of the tensor field is given by (see [3] for a proof.) = From this definition we have the following relations for the gradients of a scalar field ϕ {\displaystyle \phi } , a vector field v , and a second ...
A spatial gradient is a gradient whose components are spatial derivatives, i.e., rate of change of a given scalar physical quantity with respect to the position coordinates in physical space. Homogeneous regions have spatial gradient vector norm equal to zero.
Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π), z is the regular z-coordinate. (ρ, φ, z) is given in Cartesian coordinates by: