Search results
Results from the WOW.Com Content Network
In digital electronics and computer science (fields of applied logic engineering and mathematics), truth tables can be used to reduce basic Boolean operations to simple correlations of inputs to outputs, without the use of logic gates or code. For example, a binary addition can be represented with the truth table:
A NAND gate is equivalent to an OR gate with negated inputs, and a NOR gate is equivalent to an AND gate with negated inputs. This leads to an alternative set of symbols for basic gates that use the opposite core symbol (AND or OR) but with the inputs and outputs negated. Use of these alternative symbols can make logic circuit diagrams much ...
The AND gate is a basic digital logic gate that implements the logical conjunction (∧) from mathematical logic – AND gates behave according to their truth table. A HIGH output (1) results only if all the inputs to the AND gate are HIGH (1). If all of the inputs to the AND gate are not HIGH, a LOW (0) is outputted.
Because it has only one input, it is a unary operation and has the simplest type of truth table. It is also called the complement gate [2] because it produces the ones' complement of a binary number, swapping 0s and 1s. The NOT gate is one of three basic logic gates from which any Boolean circuit may be built up. Together with the AND gate and ...
XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate implements an exclusive or from mathematical logic; that is, a true output results if one, and only one, of the inputs to the gate is true.
The NOR gate is a digital logic gate that implements logical NOR - it behaves according to the truth table to the right. A HIGH output (1) results if both the inputs to the gate are LOW (0); if one or both input is HIGH (1), a LOW output (0) results. NOR is the result of the negation of the OR operator.
The XNOR gate (sometimes ENOR, EXNOR, NXOR, XAND and pronounced as Exclusive NOR) is a digital logic gate whose function is the logical complement of the Exclusive OR gate. [1] It is equivalent to the logical connective ( ↔ {\displaystyle \leftrightarrow } ) from mathematical logic , also known as the material biconditional.
The gate can be represented with the plus sign (+) because it can be used for logical addition. [1] Equivalently, an OR gate finds the maximum between two binary digits, just as the AND gate finds the minimum. [2] Together with the AND gate and the NOT gate, the OR gate is one of three basic logic gates from which any Boolean circuit may