Search results
Results from the WOW.Com Content Network
CaO(c) and Rh(c) are in their normal standard state of crystalline solid at all temperatures. S 2 (g) is a non-physical state below about 882 K and NiO(g) is a non-physical state at all temperatures. Molar heat capacity of four substances in their designated states at 1 atm pressure. CaO(c) and Rh(c) are in their normal standard state of ...
Generally, forced convection heat sink thermal performance is improved by increasing the thermal conductivity of the heat sink materials, increasing the surface area (usually by adding extended surfaces, such as fins or foam metal) and by increasing the overall area heat transfer coefficient (usually by increase fluid velocity, such as adding ...
The heat transfer coefficient is often calculated from the Nusselt number (a dimensionless number). There are also online calculators available specifically for Heat-transfer fluid applications. Experimental assessment of the heat transfer coefficient poses some challenges especially when small fluxes are to be measured (e.g. < 0.2 W/cm 2). [1] [2]
Temperature vs. heat load diagram of hot stream (H 2 O entering at 20 bar, 473.15 K, and 4 kg/s) and cold stream (R-11 entering at 18 bar, 303.15 K, and 5 kg/s) in a counter-flow heat exchanger. "Pinch" is the point of closest approach between the hot and cold streams in the T vs. H diagram.
Pd = Thermal power generated by a CPU and to be dissipated into the ambient through a suitable Heat sink. It corresponds to the total power drain from the direct current supply rails of the CPU. Rca (°C/W) = Thermal resistance of the Heat sink, between the case of the CPU and the ambient air.
A larger Nusselt number corresponds to more active convection, with turbulent flow typically in the 100–1000 range. [2] A similar non-dimensional property is the Biot number, which concerns thermal conductivity for a solid body rather than a fluid. The mass transfer analogue of the Nusselt number is the Sherwood number.
A heat spreader transfers energy as heat from a hotter source to a colder heat sink or heat exchanger. There are two thermodynamic types, passive and active. The most common sort of passive heat spreader is a plate or block of material having high thermal conductivity, such as copper, aluminum, or diamond. An active heat spreader speeds up heat ...
When the Biot number is greater than 0.1 or so, the heat equation must be solved to determine the time-varying and spatially-nonuniform temperature field within the body. Analytic methods for handling these problems, which may exist for simple geometric shapes and uniform material thermal conductivity , are described in the article on the heat ...