Search results
Results from the WOW.Com Content Network
Its inverse, the type-III DCT, is correspondingly often called simply the inverse DCT or the IDCT. Two related transforms are the discrete sine transform (DST), which is equivalent to a DFT of real and odd functions, and the modified discrete cosine transform (MDCT), which is based on a DCT of overlapping data. Multidimensional DCTs (MD DCTs ...
The modified discrete cosine transform (MDCT) is a transform based on the type-IV discrete cosine transform (DCT-IV), with the additional property of being lapped: it is designed to be performed on consecutive blocks of a larger dataset, where subsequent blocks are overlapped so that the last half of one block coincides with the first half of the next block.
In addition to spectral analysis of signals, discrete transforms play important role in data compression, signal detection, digital filtering and correlation analysis. [2] The discrete cosine transform (DCT) is the most widely used transform coding compression algorithm in digital media, followed by the discrete wavelet transform (DWT).
Two-dimensional DCT frequencies from the JPEG DCT. The DCT is used in JPEG image compression, MJPEG, MPEG, DV, Daala, and Theora video compression. There, the two-dimensional DCT-II of NxN blocks are computed and the results are quantized and entropy coded. In this case, N is typically 8 and the DCT-II formula is applied to each row and column ...
In mathematics, the discrete sine transform (DST) is a Fourier-related transform similar to the discrete Fourier transform (DFT), but using a purely real matrix.It is equivalent to the imaginary parts of a DFT of roughly twice the length, operating on real data with odd symmetry (since the Fourier transform of a real and odd function is imaginary and odd), where in some variants the input and ...
The DFT is also used to efficiently solve partial differential equations, and to perform other operations such as convolutions or multiplying large integers. Since it deals with a finite amount of data, it can be implemented in computers by numerical algorithms or even dedicated hardware.
In mathematics the finite Fourier transform may refer to either . another name for discrete-time Fourier transform (DTFT) of a finite-length series. E.g., F.J.Harris (pp. 52–53) describes the finite Fourier transform as a "continuous periodic function" and the discrete Fourier transform (DFT) as "a set of samples of the finite Fourier transform".
The inverse DTFT reconstructs the original sampled data sequence, while the inverse DFT produces a periodic summation of the original sequence. The Fast Fourier Transform (FFT) is an algorithm for computing one cycle of the DFT, and its inverse produces one cycle of the inverse DFT.