Search results
Results from the WOW.Com Content Network
However, every finite dimensional normed space is a reflexive Banach space, so Riesz’s lemma does holds for = when the normed space is finite-dimensional, as will now be shown. When the dimension of X {\displaystyle X} is finite then the closed unit ball B ⊆ X {\displaystyle B\subseteq X} is compact.
The Gram-Schmidt theorem, together with the axiom of choice, guarantees that every vector space admits an orthonormal basis. This is possibly the most significant use of orthonormality, as this fact permits operators on inner-product spaces to be discussed in terms of their action on the space's orthonormal basis vectors. What results is a deep ...
Orthogonal array testing is a systematic and statistically-driven black-box testing technique employed in the field of software testing. [ 1 ] [ 2 ] This method is particularly valuable in scenarios where the number of inputs to a system is substantial enough to make exhaustive testing impractical.
The space of distributions, being defined as the continuous dual space of (), is then endowed with the (non-metrizable) strong dual topology induced by () and the canonical LF-topology (this topology is a generalization of the usual operator norm induced topology that is placed on the continuous dual spaces of normed spaces).
The norm on induced by , is equal to the original norm on and the continuous dual space of is the set of all real-valued bounded -linear functionals on (see the article about the polarization identity for additional details about this relationship).
The Riesz–Fischer theorem also applies in a more general setting. Let R be an inner product space consisting of functions (for example, measurable functions on the line, analytic functions in the unit disc; in old literature, sometimes called Euclidean Space), and let {} be an orthonormal system in R (e.g. Fourier basis, Hermite or Laguerre polynomials, etc. – see orthogonal polynomials ...
If a normal operator T on a finite-dimensional real [clarification needed] or complex Hilbert space (inner product space) H stabilizes a subspace V, then it also stabilizes its orthogonal complement V ⊥. (This statement is trivial in the case where T is self-adjoint.) Proof. Let P V be the orthogonal projection onto V.
The space of all bounded linear operators of finite rank (i.e. that have a finite-dimensional range) is a dense subset of the space of Hilbert–Schmidt operators (with the Hilbert–Schmidt norm). [4] The set of Hilbert–Schmidt operators is closed in the norm topology if, and only if, H is finite-dimensional.