Search results
Results from the WOW.Com Content Network
However, every finite dimensional normed space is a reflexive Banach space, so Riesz’s lemma does holds for = when the normed space is finite-dimensional, as will now be shown. When the dimension of X {\displaystyle X} is finite then the closed unit ball B ⊆ X {\displaystyle B\subseteq X} is compact.
The Gram-Schmidt theorem, together with the axiom of choice, guarantees that every vector space admits an orthonormal basis. This is possibly the most significant use of orthonormality, as this fact permits operators on inner-product spaces to be discussed in terms of their action on the space's orthonormal basis vectors. What results is a deep ...
In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity to the linear algebra of bilinear forms. Two elements u and v of a vector space with bilinear form B {\displaystyle B} are orthogonal when B ( u , v ) = 0 {\displaystyle B(\mathbf {u} ,\mathbf {v} )=0} .
It was simply referred to as property (H) in a list of properties for normed spaces that starts with (A) and ends with (H). This list was given by K. Fan and I. Glicksberg (Observe that the definition of (H) given by Fan and Glicksberg includes additionally the rotundity of the norm, so it does not coincide with the Radon-Riesz property itself).
The space of all bounded linear operators of finite rank (i.e. that have a finite-dimensional range) is a dense subset of the space of Hilbert–Schmidt operators (with the Hilbert–Schmidt norm). [4] The set of Hilbert–Schmidt operators is closed in the norm topology if, and only if, H is finite-dimensional.
In mathematics, a strictly convex space is a normed vector space (X, || ||) for which the closed unit ball is a strictly convex set. Put another way, a strictly convex space is one for which, given any two distinct points x and y on the unit sphere ∂B (i.e. the boundary of the unit ball B of X), the segment joining x and y meets ∂B only at ...
As with a basis of vectors in a finite-dimensional space, orthogonal functions can form an infinite basis for a function space. Conceptually, the above integral is the equivalent of a vector dot product ; two vectors are mutually independent (orthogonal) if their dot-product is zero.
The spinor norm is a homomorphism from an orthogonal group over a field F to the quotient group F × / (F ×) 2 (the multiplicative group of the field F up to multiplication by square elements), that takes reflection in a vector of norm n to the image of n in F × / (F ×) 2.