enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    This logarithmic number of operations is to be compared with the trivial algorithm which requires n − 1 multiplications. This algorithm is not tail-recursive. This implies that it requires an amount of auxiliary memory that is roughly proportional to the number of recursive calls -- or perhaps higher if the amount of data per iteration is ...

  3. Anonymous recursion - Wikipedia

    en.wikipedia.org/wiki/Anonymous_recursion

    Conversely, the use of fixed-pointed combinators may be generically referred to as "anonymous recursion", as this is a notable use of them, though they have other applications. [3] [4] This is illustrated below using Python. First, a standard named recursion:

  4. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    Karatsuba's basic step works for any base B and any m, but the recursive algorithm is most efficient when m is equal to n/2, rounded up. In particular, if n is 2 k, for some integer k, and the recursion stops only when n is 1, then the number of single-digit multiplications is 3 k, which is n c where c = log 2 3.

  5. Corecursion - Wikipedia

    en.wikipedia.org/wiki/Corecursion

    In computer science, corecursion is a type of operation that is dual to recursion.Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case.

  6. Primitive recursive function - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_function

    A total recursive function is a partial recursive function that is defined for every input. Every primitive recursive function is total recursive, but not all total recursive functions are primitive recursive. The Ackermann function A(m,n) is a well-known example of a total recursive function (in fact, provable total), that is not primitive ...

  7. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    [1] [2] Recursion solves such recursive problems by using functions that call themselves from within their own code. The approach can be applied to many types of problems, and recursion is one of the central ideas of computer science. [3] The power of recursion evidently lies in the possibility of defining an infinite set of objects by a finite ...

  8. Mutual recursion - Wikipedia

    en.wikipedia.org/wiki/Mutual_recursion

    As with direct recursion, tail call optimization is necessary if the recursion depth is large or unbounded, such as using mutual recursion for multitasking. Note that tail call optimization in general (when the function called is not the same as the original function, as in tail-recursive calls) may be more difficult to implement than the ...

  9. Ackermann function - Wikipedia

    en.wikipedia.org/wiki/Ackermann_function

    First, place the natural numbers along the top row. To determine a number in the table, take the number immediately to the left. Then use that number to look up the required number in the column given by that number and one row up. If there is no number to its left, simply look at the column headed "1" in the previous row.