enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    Karatsuba's basic step works for any base B and any m, but the recursive algorithm is most efficient when m is equal to n/2, rounded up. In particular, if n is 2 k, for some integer k, and the recursion stops only when n is 1, then the number of single-digit multiplications is 3 k, which is n c where c = log 2 3.

  3. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    where a represents the number of recursive calls at each level of recursion, b represents by what factor smaller the input is for the next level of recursion (i.e. the number of pieces you divide the problem into), and f(n) represents the work that the function does independently of any recursion (e.g. partitioning, recombining) at each level ...

  4. Recursion - Wikipedia

    en.wikipedia.org/wiki/Recursion

    A recursive step — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ancestor. One's ancestor is either: One's parent (base case), or; One's parent's ancestor (recursive step). The Fibonacci sequence is another classic example of recursion: Fib(0) = 0 as ...

  5. Course-of-values recursion - Wikipedia

    en.wikipedia.org/wiki/Course-of-values_recursion

    This recursion is a primitive recursion because it computes the next value (n+1)! of the function based on the value of n and the previous value n! of the function. On the other hand, the function Fib( n ), which returns the n th Fibonacci number , is defined with the recursion equations

  6. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    The m-th term of any constant-recursive sequence (such as Fibonacci numbers or Perrin numbers) where each term is a linear function of k previous terms can be computed efficiently modulo n by computing A m mod n, where A is the corresponding k×k companion matrix. The above methods adapt easily to this application.

  7. Primitive recursive function - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_function

    A total recursive function is a partial recursive function that is defined for every input. Every primitive recursive function is total recursive, but not all total recursive functions are primitive recursive. The Ackermann function A(m,n) is a well-known example of a total recursive function (in fact, provable total), that is not primitive ...

  8. Divide-and-conquer algorithm - Wikipedia

    en.wikipedia.org/wiki/Divide-and-conquer_algorithm

    An important application of divide and conquer is in optimization, [example needed] where if the search space is reduced ("pruned") by a constant factor at each step, the overall algorithm has the same asymptotic complexity as the pruning step, with the constant depending on the pruning factor (by summing the geometric series); this is known as ...

  9. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    The binary number system expresses any number as a sum of powers of 2, and denotes it as a sequence of 0 and 1, separated by a binary point, where 1 indicates a power of 2 that appears in the sum; the exponent is determined by the place of this 1: the nonnegative exponents are the rank of the 1 on the left of the point (starting from 0), and ...