Search results
Results from the WOW.Com Content Network
Thus the formula of the preceding article leads itself to the remarkable Theorem. If a curved surface is developed upon any other surface whatever, the measure of curvature in each point remains unchanged. Gauss's original statement of the Theorema Egregium, translated from Latin into English.
Gauss's Theorema egregium (Latin: "remarkable theorem") states that Gaussian curvature of a surface can be determined from the measurements of length on the surface itself. In fact, it can be found given the full knowledge of the first fundamental form and expressed via the first fundamental form and its partial derivatives of first and second ...
The Gauss formula [6] now asserts that is the Levi-Civita connection for M, and is a symmetric vector-valued form with values in the normal bundle. It is often referred to as the second fundamental form. An immediate corollary is the Gauss equation for the curvature tensor.
where the second equality follows from the Gauss–Jacobi equation and the fourth from Gauss's derivative formula in the orthogonal coordinates (r,θ). Gauss's formula shows that the curvature at a point can be calculated as the limit of angle excess α + β + γ − π over area for successively smaller geodesic triangles near the point ...
This is called the Gauss equation, as it may be viewed as a generalization of Gauss's Theorema Egregium. For general Riemannian manifolds one has to add the curvature of ambient space; if N is a manifold embedded in a Riemannian manifold ( M , g ) then the curvature tensor R N of N with induced metric can be expressed using the second ...
Theorema egregium of Gauss states that the Gaussian curvature of a surface can be expressed solely in terms of the first fundamental form and its derivatives, so that K is in fact an intrinsic invariant of the surface. An explicit expression for the Gaussian curvature in terms of the first fundamental form is provided by the Brioschi formula.
Gauss theorem (vector calculus) Gamas's Theorem (multilinear algebra) Gap theorem (computational complexity theory) Gauss's Theorema Egregium (differential geometry) Gauss–Bonnet theorem (differential geometry) Gauss–Lucas theorem (complex analysis) Gauss–Markov theorem ; Gauss–Wantzel theorem ; Gelfand–Mazur theorem (Banach algebra)
In 1827, Carl Friedrich Gauss discovered that the Gaussian curvature of a surface embedded in 3-dimensional space only depends on local measurements made within the surface (the first fundamental form). [1] This result is known as the Theorema Egregium ("remarkable theorem" in Latin).