enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quartile - Wikipedia

    en.wikipedia.org/wiki/Quartile

    The three quartiles, resulting in four data divisions, are as follows: The first quartile (Q 1) is defined as the 25th percentile where lowest 25% data is below this point. It is also known as the lower quartile. The second quartile (Q 2) is the median of a data set; thus 50% of the data lies below this point.

  3. Five-number summary - Wikipedia

    en.wikipedia.org/wiki/Five-number_summary

    If data are placed in order, then the lower quartile is central to the lower half of the data and the upper quartile is central to the upper half of the data. These quartiles are used to calculate the interquartile range, which helps to describe the spread of the data, and determine whether or not any data points are outliers.

  4. Order statistic - Wikipedia

    en.wikipedia.org/wiki/Order_statistic

    The problem of computing the kth smallest (or largest) element of a list is called the selection problem and is solved by a selection algorithm. Although this problem is difficult for very large lists, sophisticated selection algorithms have been created that can solve this problem in time proportional to the number of elements in the list ...

  5. Interquartile range - Wikipedia

    en.wikipedia.org/wiki/Interquartile_range

    The lower quartile corresponds with the 25th percentile and the upper quartile corresponds with the 75th percentile, so IQR = Q 3 − Q 1 [1]. The IQR is an example of a trimmed estimator , defined as the 25% trimmed range , which enhances the accuracy of dataset statistics by dropping lower contribution, outlying points. [ 5 ]

  6. Quantile - Wikipedia

    en.wikipedia.org/wiki/Quantile

    The third quartile value for the original example above is determined by 11×(3/4) = 8.25, which rounds up to 9. The ninth value in the population is 15. 15 Fourth quartile Although not universally accepted, one can also speak of the fourth quartile. This is the maximum value of the set, so the fourth quartile in this example would be 20.

  7. Box plot - Wikipedia

    en.wikipedia.org/wiki/Box_plot

    Third quartile (Q 3 or 75th percentile): also known as the upper quartile q n (0.75), it is the median of the upper half of the dataset. [ 7 ] In addition to the minimum and maximum values used to construct a box-plot, another important element that can also be employed to obtain a box-plot is the interquartile range (IQR), as denoted below:

  8. Quantile function - Wikipedia

    en.wikipedia.org/wiki/Quantile_function

    For example, they require the median and 25% and 75% quartiles as in the example above or 5%, 95%, 2.5%, 97.5% levels for other applications such as assessing the statistical significance of an observation whose distribution is known; see the quantile entry.

  9. Quartile coefficient of dispersion - Wikipedia

    en.wikipedia.org/wiki/Quartile_coefficient_of...

    In statistics, the quartile coefficient of dispersion (QCD) is a descriptive statistic which measures dispersion and is used to make comparisons within and between data sets. Since it is based on quantile information, it is less sensitive to outliers than measures such as the coefficient of variation .