Search results
Results from the WOW.Com Content Network
To decrease free energy of the system the surfactant is precipitated out. CMC is determined by establishing inflection points for pre-determined surface tension of surfactants in solution. Plotting the inflection point against the surfactant concentration will provide insight into the critical micelle concentration by showing stabilization of ...
The difficulty in filling the volume of the interior of a bilayer, while accommodating the area per head group forced on the molecule by the hydration of the lipid head group, leads to the formation of the micelle. This type of micelle is known as a normal-phase micelle (or oil-in-water micelle).
Schematic of a micellar solution showing spherical micelles distributed in water (solvent) and having no long-range positional order. In colloid science, a micellar solution consists of a dispersion of micelles (small particles) in a solvent (most usually water).
A free body diagram is not a scaled drawing, it is a diagram. The symbols used in a free body diagram depends upon how a body is modeled. [6] Free body diagrams consist of: A simplified version of the body (often a dot or a box) Forces shown as straight arrows pointing in the direction they act on the body
The unique characteristic of PPO block, which is hydrophobic at temperatures above 288 K and is soluble in water at temperatures below 288 K, leads to the formation of micelle consisting of PEO-PPO-PEO triblock copolymers. Some studies report that the hydrophobic core contains PPO block, and a hydrophilic corona consists of PEO block.
Schematic cross sectional profile of a typical lipid bilayer. There are three distinct regions: the fully hydrated headgroups, the fully dehydrated alkane core and a short intermediate region with partial hydration. Although the head groups are neutral, they have significant dipole moments that influence the molecular arrangement. [5]
Bicelles are a related class of model membrane, [57] typically made of two lipids, one of which forms a lipid bilayer while the other forms an amphipathic, micelle-like assembly shielding the bilayer center from surrounding solvent molecules. Bicelles can be thought of as a segment of bilayer encapsulated and solubilized by a micelle.
In 1923, Peter Debye and Erich Hückel reported the first successful theory for the distribution of charges in ionic solutions. [7] The framework of linearized Debye–Hückel theory subsequently was applied to colloidal dispersions by S. Levine and G. P. Dube [8] [9] who found that charged colloidal particles should experience a strong medium-range repulsion and a weaker long-range attraction.